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Appendix B

In this appendix we consider the possibility of computing the misclassification
error when the probability measure Q (the measure used by the oracle to compute
misclassification error) differs from P (the measure used by the econometrician to
generate random draws). Given an algorithm pλM , the misclassification error of
learning a concept λ thus becomes LppλM ;λ,Qq.

A concept λ P Λ is pQ,P q learnable if there exists an algorithm pλM and a function
mpε, δq such that for any 0 ă ε and δ ă 1:

P
´

LppλM ;λ,Qq ă ε
¯

ě 1´ δ, (1)

for all distributions P on Θ and for any λ P Λ; provided M ě mpε, δq.
We establish the following results

1. We provide a simple example, where θ has dimension d “ 1, that shows that
learning in the sense of (1) is impossible even if Λ has finite VC dimension. The
example shows that when Q and P are different, learning becomes complicated
because there is a lot of flexibility in the choice of P .

2. We also show that, not surprisingly, if we restrict P to belong to a class PQ
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such that

sup
AP continuity sets of Q

|P pAq ´QpAq| ď η,

for sufficiently small η, then learning is possible (for a fixed ε and δ) and the
sufficient number of draws becomes

ln

ˆ

1

δ

˙

1

2ε´ η
, η ă 2ε.

which is larger than ln
`

1
δ

˘

1
2ε ; the number of draws that would be required if

P were equal to Q.

The example suggests that allowing P and Q to differ does not add much to our
previous results.

Example:

Suppose that the parameter of interest lives in the real line, so that d “ 1.
Suppose that the concept class contains elements of the form ra,8q. The class has
VC dimension 1.1

For notational simplicity, we identify sets of the form rλ,8q, rpλ,8q by the scalars
λ, pλ. Algebra shows that

P
´

Lppλ;λ,Qq
¯

“ |Qpλq ´Qppλq|.

Assume that Q is absolutely continuous with respect to the Lebesgue measure.
We show that in this example, learning is not possible. It is sufficient to show

that for any algorithm pλM , there exists ε, δ and λ such that for some P

P
´

LppλM ;λ,Qq ě ε
¯

ě δ.

regardless of the sample size.
Fix λ P R and let pλM be an arbitrary algorithm. Let M be an arbitrary sample

size.
1Suppose we have 1 point, then λ can label it either 0 or 1, implying one point can be shattered.

Suppose there are 2 points. We can generate labels p0, 0q, p1, 1q and p0, 1q, but can’t generate p1, 0q
labels. 2 points cannot be shattered, and thus the VC dimension (the largest number of points that
can be shattered) of Λ is 1.
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Without loss of generality,2 consider algorithms pλM : px1, . . . , xmq Ñ R such that
for any set pa, bq Ă R,

pλ´1
M pa, bq ‰ H. (2)

Take an arbitrary value λ˚, and an arbitrary set pλ˚, λ˚q, such that λ˚ P pλ˚, λ˚q.
ε˚ “ mintQpλ

˚
q ´Qpλ˚q, Qpλ˚q ´Qpλ˚qu ą 0. Such a set exists as Q is absolutely

continuous w.r.t. to the Lebesgue measure. For any algorithm satisfying (2) we have

P
´

LppλM ;λ,Qq ě ε˚
¯

ě 1´ P ppλM P pλ˚, λ
˚
qq.

For any sample size—and given that P is unrestricted—there is a P such that P ppλM P

pλ˚, λ
˚
qq can be made arbitrary small. The example shows learning is impossible,

even if the concept has finite VC dimension.
Now we show that if we allow for probability distributions P that are close to Q,

learning is still possible. The result is not surprising at all, and all we need is to use
the right definition of “closeness”. Let

P ηQ ”

#

P
ˇ

ˇ

ˇ
sup

AP cont sets of Q
|P pAq ´QpAq| ď η

+

.

We argue that the algorithm that sets pλM “ mintxi|xi “ 1u or pλM “ maxtxi|xi “ 0u

learns uniformly, for a fixed pair pε, δq, where ε ě η{2.
The proof goes as follows. Fix λ P R. Find λpλq ă λpλq such that Qpλpλqq ´

Qpλq “ ε “ Qpλq ´Qpλpλqq. Define the set Apλq “ rλpλq, λpλqs. Then

P
´

LppλM ;λ,Qq ě ε
¯

“ P pxi R rλpλq, λpλqs, @iq

“ p1´ P pApλqqqM .

2If this were not the case, consider any pa, bq for which pλ´1
M pa, bq “ H. Then we could pick

λ P pa, bq and set ε˚
“ mintQpaq ´Qpλq, Qpλq ´Qpaqu. In this case, we have that for any P :

P
´

LppλM , λ,Qq ě ε˚
¯

ě P ppλM ě bq ` P ppλM ď aq

“ 1´ P ppλM P pa, bqq “ 1´ P pHq “ 1.
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Note by definition QpApλqq “ 2ε, which makes the line above equal to

p1´ rP pApλqq ´QpApλqqs ´ 2εqM ,

implying

P pLppλM ;λ,Qq ě εq ď p1´ p2ε´ ηqqM ,

as for any P P P ηQ, we have ´η ď P pAq ´QpAq ď η. Therefore for a fixed pε, δq

M ě ln

ˆ

1

δ

˙

1

2ε´ η

suffices to learn the concept class. This requires more draws than when Q “ P ,
which would be exactly

ln

ˆ

1

δ

˙

1

2ε
.

This formalizes the result that, if P is required to be sufficiently close to Q, then
learning is indeed possible (but the number of draws required to learn is practically
the same as when P “ Q).

Appendix C

In this section we describe how to (machine) learn parameter regions that arise in
the Latent Dirichlet Allocation (LDA) model of Blei et al. (2003). For more details,
see Ke et al. (2019) (henceforth, KMN).

The LDA is a popular machine learning algorithm for text analysis. The LDA
model assumes that there are K latent topics; a topic is a distribution over the
V terms in the vocabulary, βk P ∆V´1. Each document d is characterized by a
document-specific distribution over theK topics, θd P ∆K´1. The topic distributions
B ” pβ1, . . . , βKq and the topic compositions Θ ” rθ1, . . . θDs determine the mixture
model for each word in document d.

Let Pdpt|B, θdq denote the probability that a term t P t1, . . . , V u appears in
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document d. The model assumes that

Pdpt|B, θdq “
K
ÿ

k“1

βt,kθk,d.

The likelihood of corpus C is thus parameterized by pB,Θq and given by

PpC|B,Θq “
D
ź

d“1

V
ź

t“1

pPdpt|B,Θqqnt,d

“

D
ź

d“1

V
ź

t“1

pBΘq
nt,d

t,d , (3)

where nt,d is count of the number of times term t appears in document d. We can
collect the terms Pdptq in the V ˆD matrix P and use (3) to write

P “ BΘ. (4)

Theorem 1 of KMN shows that the parameters of the likelihood, B and Θ in (4)
are set identified and thus the choice of prior matters. They show that the range
of posterior means can be described using solutions to the rank K Non-negative
Matrix Factorization (NMF) of the term-document frequency matrix with weight
Wt,d, pP—the non-negative matrices pB,Θq that solve:

min
BPRV ˆK

` ,ΘPRKˆD
`

D
ÿ

i“1

V
ÿ

t“1

Wt,d

«

P̂t,d log

˜

P̂t,d
pBΘqt,d

¸

´ P̂t,d ` pBΘqt,d

ff

. (5)

Let NMFp pP ,Wt,dq, denote the set rank K NMF’s. The set S is:

S ”
!

pB,Θq | pB,Θq P NMFp pP ,Wt,dq

)

,

where pB,Θq are assumed to be matrices whose columns are probability distributions.
The algorithm to solve for a solution of (5) is initialized randomly, and thus the

algorithm induces a distribution over S. Thus we can compute the tightest bands
that contain the set λpSq for some functional using random sampling.

KMN revisit the work of Hansen and McMahon (2016), studying the effects
of increased transparency on the discussions of Federal Open Market Committee
(FOMC). Let θi,t be the weight of ith topic in meeting at time t, the Herfindahl
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index for the topic distribution is given by

Ht ”

K
ÿ

i“1

θ2
i,t.

The specific functional of interest is the ‘transparency coefficient’ (λ) in the regression
of the concentration measure on a dummy for the date in which the Federal Reserve
changed its transparency policy (October 1993) and controls

Ht “ α` λDpTransqt ` γXt ` εt.

Note that λ is one dimensional, hence d “ 1. The data are the FOMC transcripts
from August 1987–January 2006 which have been extensively preprocessed. The
meetings are broken into two sections FOMC1 and FOMC2 and the regression is
run separately on each. The resulting dimensions of the term-document matrices
are 9000ˆ148 and 6000ˆ148 for FOMC1 and FOMC2 respectively. The number of
topics is set to K “ 40. The resulting number of parameters estimated is large—B

is 9000ˆ 40 and Θ is 40ˆ 148, a total of 365, 920.
KMN take M “ 120 draws from λpSq, corresponding to a misclassification error

of at most 5.91% with probability at least 94.09% (ε “ δ “ 0.0591) and the iso-draw
curve presented in Figure 1.

The tightest band containing λpSq for FOMC1 is r´0.0380, 0.0466s, and for
FOMC2 is r´0.0615, 0.0350s.
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Figure 1: ‘Iso-draw’ curve for M “ 120: the values of ε and δ that can be supported
with 120 draws.
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