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How many random points from an identified set, a confidence set, or a high-
est posterior density set suffice to describe them? This paper argues that taking
random draws from a parameter region in order to approximate its shape is a
supervised learning problem (analogous to sampling pixels of an image to rec-
ognize it). Misclassification error—a common criterion in machine learning—
provides an off-the-shelf tool to assess the quality of a given approximation. We
say a parameter region can be learned if there is an algorithm that yields a mis-
classification error of at most ε with probability at least 1´ δ, regardless of the
sampling distribution. We show that learning a parameter region is possible if
and only if its potential shapes are not too complex. Moreover, the tightest band
that contains a d-dimensional parameter region is always learnable from the in-
side (in a sense we make precise), with at least max tp1´ εq ln p1{δq , p3{16qdu {ε

draws, but at most mint2d lnp2d{δq, expp1qp2d`lnp1{δqqu{ε. These bounds grow
linearly in the dimension of the parameter region, and are uniform with respect
to its true shape. We illustrate the usefulness of our results using structural
vector autoregressions. We show how many orthogonal matrices are neces-
sary/sufficient to evaluate the impulse responses’ identified set and how many
‘shotgun plots’ to report when conducting joint inference on impulse responses.
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1 Introduction

Machine learning can be broadly defined as a set of data-driven computational
methods used to make informed decisions in different tasks, such as prediction, rank-
ing and classification problems (Mohri et al., 2012). There is now a large and im-
portant body of work showing that machine learning algorithms can be extended
and adapted to problems that are of interest for economists; for example estimation
of heterogeneous treatment effects (Wager and Athey, 2018); policy evaluation with
very many regressors (Belloni et al., 2014, 2017); and the analysis of discretized
unobserved heterogeneity (Bonhomme et al., 2017).

This paper aims to contribute to the recent gainful connection between machine
learning and econometrics. The paper uses well-known concepts in the supervised
learning literature – such as misclassification error, sample complexity, and the def-
inition of learning itself – to study a common approach to describing parameter
regions in econometric problems: sampling elements from inside of these regions at
random.

To fix ideas and introduce notation, consider the problem of reporting the re-
sponse of prices to a contractionary monetary shock in a sign-restricted structural
vector autoregression (SVAR); see Uhlig (2005) and Faust (1998). Theory (the sign
restrictions) and data (reduced-form estimators) restrict the model’s structural pa-
rameters, denoted θ, to belong to some set S. The parameter region of interest,
λpSq, is the set of d-horizon impulse responses implied by the structural parameters
in S; where λp¨q is the function that maps θ to the vector of impulse responses.

Describing a parameter region is complicated. Verifying whether some vector
of impulse responses belongs to λpSq requires ‘inverting’ λp¨q; and this is typically
a hard problem. Also, the parameter region of interest is typically of more than
one dimension and not much is known about its shape. This means that reporting
features of λpSq, such as the form of its boundary, is rather difficult.

A common and practical approach to describing parameter regions is random
sampling. This means that the econometrician chooses some probability distribution
P , takes M i.i.d. draws of θ, computes λpθq, and then uses this to construct some
approximation pλM for the set λpSq.

This paper argues that approximating a parameter region as described above can
be phrased as a supervised (machine) learning problem, where the object of interest
is to ‘learn’ λpSq. In our leading examples, parameter regions will be thought of
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as either: an estimated identified set, a confidence set formed by test inversion, or
a highest posterior density credible set. The supervised learning analogy allows us
to use some well-known machine learning concepts to achieve two objectives. First,
discipline the way we think about the accuracy of a random sampling approxima-
tion. Second, provide some guidance on the number of random draws that suffice to
guarantee an accurate approximation. To the best of our knowledge, none of these
issues have been addressed in the literature before.1

Accuracy of Random Sampling Approximations: When can we say that
pλM provides a good description/approximation of λpSq? The proposal of this paper is
to use the misclassification error criterion, which is commonly used in the supervised
learning literature (Murphy, 2012, p. 205). Imagine there is an omniscient agent
(an oracle) who can easily check whether some parameter λpθq belongs to the sets
λpSq and pλM . To judge the quality of the approximation, the oracle computes how
often the econometrician’s approximation errs on classifying λpθq according to some
probability measure Q. This is, the oracle computes

LppλM ;λpSq, Qq ” Q
´

1tλpθq P λpSqu ‰ 1tλpθq P pλMu
¯

. (1)

The oracle has two concerns. On the one hand, he worries that – due to a
possibly insufficient number of draws – the quality of the approximation provided by
pλM (which is random as it depends on the sample of M i.i.d draws from P ) could
be poor too often. On the other hand, he also worries about the econometrician’s
choice of probability distribution P to conduct random sampling. To protect himself
against these two issues, the oracle would like the econometrician to guarantee that
the number of draws has been large enough to make

P
´

LppλM ;λpSq, Qq ă ε
¯

ě 1´ δ, (2)

for any probability distribution P , and for any possible shape of the set λpSq (which
both the oracle and the econometrician know to belong to some class Λ). In other
words, the oracle demands that (2) be satisfied for a sample size large enough, that
can only depend on the values of ε and δ. These accuracy parameters ensure the

1The closest reference that we are aware of is the work of Bar and Molinari (2013), who pro-
pose computational methods for set-identified models via data augmentation and support vector
machines. Also, the earliest reference that we found of using random sampling to approximate
parameter regions in set identified models is Horowitz et al. (2003), p. 457, and Horowitz and
Manski (2006), p. 424.
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probability of observing a misclassification error less than ε occurs with probability
at least 1´ δ, regardless of P and the shape of the parameter region λpSq.

The econometrician’s problem presented above can be described using supervised
learning jargon. There is a sample pλpθ1q, . . . , λpθM qq of ‘inputs’ that are i.i.d draws
from a distribution P and there are also ‘labels’ plpθ1q, . . . , lpθM qq, where lpθq “ 1tθ P

Su. Eq. (1) is usually referred to as generalization error or simply misclassification
probability (see Definition 2.1 in Mohri et al., 2012). When P equals Q – that is,
when the measure used by the oracle to compute misclassification coincides with
one used by the econometrician to generate random samples – the criterion in (2)
is the Probably Approximately Correct (PAC) learning guarantee.2 Thus, whenever
P equals Q (an assumption that we will maintain in the remaining part of the
paper), the econometrician’s problem of summarizing λpSq is tantamount to using
the labelled data to (machine) learn λpSq.3

An important difference with the typical machine learning setting is that in a
standard classification problem P represents the distribution of the data and is thus
unknown. It is therefore desirable to control misclassification error uniformly over
P . When an econometrician tries to (machine) learn a parameter region, P becomes
a choice variable. We think that insisting on results that are uniform over P is still
appropriate, as it forces the econometrician to provide guarantees that the algorithm
will work, regardless of what P is, as long as the number of draws is large enough.

Guidance on the number of draws: The Fundamental Theorem of Statis-
tical Learning (Blumer et al. (1989), Theorem 2.1) allows us to prove that if Λ, the
class of sets where the parameter region lives, is too complex – in the sense of having
an infinite Vapnik–Chervonenkis dimension (Vapnik, 1998) – then it is impossible
for the econometrician to satisfy (2). In econometric applications, this result will
bind often. For example, some assumptions that are often thought to simplify the
analysis of econometric problems (such as the restricting parameter regions to be

2See Mohri et al. (2012) p. 13, Definition 2.3 for a textbook treatment. To the best of our
knowledge, the definition of learning concepts that are defined by regions in Euclidean n-dimensional
spaces was first introduced by Blumer et al. (1989), extending the seminal work of Valiant (1984).

3In Appendix B we argue that considering a set-up in which P and Q are different is not very
interesting for at least two reasons. First, learning in the sense of (2) is generally impossible if P
is allowed to be arbitrarily different to Q. Second, and not surprisingly, the criterion in (2) can be
satisfied if P is sufficiently close to Q; in which case the arguments and results we can obtain are
very similar to the case in which P “ Q.
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convex sets), do not simplify the supervised learning problem.4 Note that the choice
of concept class Λ is not only a theoretical concern: it defines the objects that the
approximation algorithm can output.

We circumvent this impossibility result by making two modifications to the def-
inition of learning in (2).

First, we assume that both the oracle and the econometrician agree to focus on
learning the tightest band containing the parameter region. Bands – which are defined
as products of intervals in each dimension – are a convenient compromise, for they are
often used to summarize uncertainty in the estimation of vector-valued parameters,
particularly in the SVAR literature. Moreover, bands are objects of low complexity,
regardless of the underlying shape of the parameter region of interest. We relax
the definition of learning by assuming the oracle computes misclassification error in
(1) with respect to the tightest band containing the parameter region of interest.
Throughout the paper we denote such tightest band as rλpSqs.5

Second, we restrict the class of probability distributions that both the econometri-
cian and the oracle can consider. We show that learning the tightest band continues
to be difficult, for the set-difference between rλpSqs and λpSq can be attached an
arbitrarily high probability. To avoid this problem, both the econometrician and
the oracle agree to consider only probability distributions that sample from inside
the parameter region of interest. In particular, we focus on distributions for which
P pθ P Sq “ 1, which implies P pλpθq P λpSqq “ 1.

Under these two modifications, we show that the tightest band that contains
the parameter region can be learned from the inside, in a sense made precise but
analogous to (2). The algorithm for learning rλpSqs from the inside consists of
reporting the largest and smallest values of the random draws inside λpSq, along
each dimension. The main result of this paper (3) shows that the sample complexity
of this algorithm – that is, the minimal number of draws required to make learning
possible – can be bounded from above by mint2d lnp2d{δq, expp1qp2d ` lnp1{δqqu{ε

4If Λ is the class of convex subsets of Rd with d ą 1, there is no algorithm satisfying (2) that can
be used to approximate λpSq by means of random sampling. This is because the class of convex
subsets of Rd with d ą 1 has infinite VC dimension.

5Another possibility would be to consider other sets to define the output of our algorithm. For ex-
ample, the tightest ellipse containing a parameter region λpSq. The VC dimension of d-dimensional
ellipsoids is pd2

` 3dq{2 (Akama and Irie, 2011). Theorem 1 implies that there is an algorithm to
learn ellipses. We do not pursue this direction because, in contrast to bands, ellipses are hard to
visualize in high dimensions.
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and below by max tp1´ εq ln p1{δq , p3{16qdu {ε.6 The bounds depend on neither the
set S nor the specifics of the function λp¨q. The only relevant information is the
space in which the parameter region λpSq lives. We derive these bounds using proof
techniques from the statistical learning literature, in particular Blumer et al. (1989);
Ehrenfeucht et al. (1989); Auer et al. (1998); Shalev-Shwartz and Ben-David (2014).

We illustrate our results using two examples motivated by recent research in
SVARs (see Kilian and Lütkepohl, 2017 for a modern, comprehensive treatment of
the topic).

First, we examine the question of how many orthogonal matrices are necessary
or sufficient for constructing identified sets of impulse responses in a sign-identified
SVAR model. We use random sampling to evaluate a natural estimator of the
impulse responses’ identified set in a sign-restricted model. We fix the model’s
reduced-form parameters at their sample estimates and use random draws from the
algorithm of Rubio-Ramirez et al. (2010) (henceforth, RRWZ). With ε “ δ “ 0.1

(misclassification error of at most 10% with probability at least 90%), the number of
draws that suffice to approximate the 16-quarters ahead identified set (of one variable
to one shock) is 987. In our empirical application, this translates to approximately
3000 iterations of the RRWZ algorithm.

Second, we study the question of how many draws are required when conducting
joint inference on structural impulse responses in a point identified SVAR model. We
also use random draws to generate ‘shotgun plots’ (Inoue and Kilian, 2013, 2016,
2019) in a point-identified SVAR model. The objective is to describe both a 68%

Wald-ellipse and a 68% highest posterior density set for structural impulse response
functions. We take two thousand draws – which for a 68% confidence set implies
1360 draws from inside the parameter region – and report an iso-draw curve. Namely,
all the combinations of pε, δq, that could be supported with this number of draws.
Our formulae imply that 2000 total draws to summarize a 68% Wald ellipse are
sufficient to support the combination ε “ δ “ 0.0732. In particular, this implies that

6In some problems, instead of using random sampling, one can solve for bands by solving con-
strained maxima/minima problems in each dimension:

min
θPS

λjpθq and max
θPS

λjpθq,

where λjpθq is the jth coordinate of λpθq. However this approach requires that the optimization
problem be sufficiently well-behaved, which may or may not hold depending on the application.
The main advantage of random sampling to learn bands is that it requires no special structure in
the problem. See 3.1 for discussion of the potential difficulties of evaluating the identified set in
SVAR’s using this maximization approach.
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2000 total draws are sufficient to guarantee that with probability at least 92.68%

probability, the misclassification error less than 7.32%.
In these applications the concept class in which λpSq lives is too complicated and

thus not learnable. In the three applications we focus on learning the tightest band
that contains the parameter region. Consequently, the relevant number of draws for
these applications has to come from inside of the parameter region.

Outline: Section 2 presents our main definitions and theoretical results. Sec-
tion 3 presents our SVAR application. Section 4 concludes. Appendix A contains
proofs. Appendix B discusses the learning problem when Q (the measure used by
the oracle to compute misclassification error) differs from P (the measure used by
the econometrician to generate random draws).

2 Theory

Let Θ Ď Rp denote the parameter space for the finite-dimensional component of
a parametric or semi-parametric statistical model. Let us assume that due to either
theory, or data, or both, the econometrician is able to restrict the values of θ P Θ to
belong to some measurable subset S Ď Θ. Assume also that the indicator function
lpθq ” 1tθ P Su can be computed without difficulty, so that each element of θ can
be given a binary label of whether it belongs to S (label 1) or not (label 0).

The examples we have in mind are as follows. The set S could be an estimator of
an identified set ; in this case S would contain the parameter values that satisfy some
restriction (like a sample moment inequality or a sign restriction). S could also be a
confidence region obtained by test inversion; in this case S would represent the set
of θ values such that, when postulated as a null hypothesis, cannot be rejected. S
could also be a highest posterior density credible set ; in this case S would represent
the set of parameter values for which the posterior density is above some threshold.7

We allow for the possibility that the parameter of interest is not θ per se, but
instead the image of θ under some measurable function λ : Θ Ñ Rd. This will be
relevant in our leading example, a set-identified SVAR, where – as discussed in the
introduction – λ represents the impulse response coefficients over different horizons.
More generally, λ could report a subvector of θ of dimension d ă p, or if θ is the
object of interest, λ could be the identity map. For Theorem 1 it will be important

7The results in the paper assume that the set S is the object of interest, but in A.7 we discuss
the consequences of observing S with sampling uncertainty.
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to maintain the assumption that λp¨q is injective. We will drop this assumption in
Theorems 2 and 3.

As we mentioned in the introduction, the econometrician is interested in describ-
ing the set λpSq, which mathematically is the image of the set S under λ.8 We
will refer to this set as the parameter region. To describe a parameter region, the
econometrician chooses a distribution P over Θ, generates a sample of size M and
computes λpθmq. Each of the elements in the sample has a label lpθmq. Note that,
under the assumption that λp¨q is injective, lpθmq “ 1 if and only if λpθmq P λpSq,
thus the label tells us whether λpθmq belongs to the parameter region λpSq or not.

2.1 Learning λpSq

In our set-up, the shape of the parameter region λpSq is not known. To capture
this lack of knowledge it will be assumed that λpSq belongs to some class of sets
Λ Ď 2λpΘq. We will refer to Λ as a concept class and we will call each of its elements,
λ, a concept.9 Note that the choice of concept class Λ is not only a theoretical
concern: it defines the objects that the algorithm can output.

Our supervised learning problem is formulated as follows. The econometrician (or
learning agent) generates a sample of size M , drawn i.i.d. from some distribution
P ; evaluates these θ-draws under λ, and generates labels that inform whether a
draw λpθmq belongs to λpSq or not. Checking whether a draw of λpθmq belongs to
λpSq is, in principle, quite difficult unless we make some additional assumptions.
One way of achieving this is by assuming λp¨q is injective (in which case, we only
need to check whether θm P S). We will use this assumption to establish Theorem 1.
Another possibility, without imposing restrictions on λp¨q, is to consider a probability
distribution P that places all of its mass on S. This will be the set-up of 3. The
econometrician’s task is to use a sample tpλpθmq, lpθmqquMm“1 to select a concept
pλM P Λ that approximates the true concept λpSq. A mapping from samples to
concepts is called an algorithm.

Let L denote the generalization error defined in (1) assuming Q (the measure
used by the oracle) equals P (the measure used by the econometrician to generate
random draws). Since the shape of λpSq (known to the oracle, but unknown to the
econometrician) is allowed to be any set λ P Λ, we will define misclassification error

8The image of the set S under a function λ is defined as λpSq ” tλ | D θ P S s.t. λ “ λpθqu.
9We use this terminology in order to establish a closer connection to the supervised learning

literature.
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relative to λ as

LppλM ;λ, P q ” P
´

1tλpθq P λu ‰ 1tλpθq P pλMu
¯

.

We will say that the concept λpSq, in the class Λ, can be learned if it satisfies the
following definition:

Definition 1 (Learnability of λpSq). The concept λpSq P Λ is said to be learnable
if there exists an algorithm pλM and a finite function mpε, δq such that for any 0 ă ε,

δ ă 1:
P
´

LppλM ;λ, P q ă ε
¯

ě 1´ δ,

for all distributions P on Θ and for any λ P Λ, whenever λ represents the true set
λpSq; provided M ě mpε, δq.

The concept of learnability in 1 is known in the statistical learning literature as
Probably Approximately Correct (PAC) learning. The parameter ε determines how
far (in terms of generalization error) the concept returned by the algorithm pλM is
from the true concept λpSq (this is the ‘approximately correct’ part). The parameter
δ indicates how often the algorithm will yield a misclassification probability larger
than ε (this is the ‘probably’ part).

Perhaps without surprise, our ability to learn will depend on how rich the concept
class Λ is. We formalize this argument in the following theorem:

Theorem 1. Suppose λp¨q is injective. λpSq P Λ Ď 2λpΘq is learnable if and only if
Λ has finite Vapnik–Chervonenkis (VC) dimension.

Proof. See Appendix A.2.

In a nutshell, Theorem 1 states that a concept class is learnable if and only if
it is not too complex. We prove Theorem 1 by invoking the Fundamental Theorem
of Statistical Learning (FTSL). See Chapter 6.4 in Shalev-Shwartz and Ben-David
(2014) for a textbook treatment or Theorem 2.1 in Blumer et al. (1989) p. 935 for
the statement of the result as used in the proof of Theorem 1.10

The versions of Theorem 1 herein referenced also show that the number of draws
required for learning can be bounded from above in terms of ε, δ and the VC di-
mension of the concept class Λ, without reference to P or the specific shape of the
10An application of VC dimension as a measure of the complexity of decision rules in decision
making, along with an application of the FTSL, can be found in Al-Najjar (2009) and Al-Najjar
and Pai (2014).
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parameter region. We will port some of the tools and techniques from the statisti-
cal learning literature to derive analogous bounds for the tightest band containing
a parameter region. To do so, we will impose some restrictions on the probability
distributions P under consideration.

Theorem 1 emphasizes that approximating the unknown parameter region λpSq
will require the econometrician to take a stand on the complexity of the concept class
Λ in which the algorithm takes values (and this class has to be correctly specified).
If this class is too complex – in the sense of having infinite VC dimension – then
learning is not possible.11

The restriction on the complexity of learnable concept classes is relevant in ap-
plications. For example, even certain restrictions that seem to simplify the approx-
imation problem (like restricting Λ to be the class of convex sets so that they can
be summarized using their support function) are usually not enough.12 The final
message of this section is that learning λpSq, in the conventional sense of the word,
is difficult and oftentimes impossible.

Finally, in order to prove Theorem 1 we restrict the function of interest, λp¨q, to be
injective. This avoids the problem of having two different points, θ and θ1, only one
of them belonging to S (hence with different labels lpθq ‰ lpθ1q), but both mapping
to the same point under λ, i.e. λpθq “ λpθ1q. We view the injectivity assumption
as being sufficient, but not necessary, for Theorem 1 to hold (we do not have an
example of a set S where the VC dimension is finite, λ is injective, but λpSq is not
learnable). One possibility for obtaining a more general version of the theorem could
be to allow for non-deterministic labels as in the agnostic learning framework (see
Theorem 6.7 in Shalev-Shwartz and Ben-David, 2014). We decided not to pursue
this generalization in this paper. In addition, the injectivity assumption will be
satisfied in the SVAR illustrative example in 3.

2.2 Learning rλpSqs

With the impossibility result of Theorem 1 in mind, we introduce the notion of
the tightest band that contains the parameter region λpSq. We want to argue that
such a band is learnable from the inside in a sense we will make precise.

The tightest band containing the parameter region λpSq is defined as the hyper-
11See A.1 for a definition and discussion of VC dimension.
12If d ą 1 then the VC dimension of the class of convex sets in Rd is infinity.

10



rectangle

rλpSqs ”
d

ą

j“1

„

inf
θPS

λjpθq , sup
θPS

λjpθq



,

where λjpθq denotes the jth coordinate of λpθq.
Figure 1 displays an example of a parameter region λpSq of strange shape along

the band rλpSqs.

λpSq

rλpSqs

Figure 1: λpSq and rλpSqs.

Bands for vector-valued parameters are versatile tools for visualizing estimation
uncertainty in econometric problems (see Horowitz and Lee, 2012, Freyberger and
Rai, 2018, Montiel Olea and Plagborg-Møller, 2019). For example, bands for impulse
response functions at different horizons are typically reported in SVAR applications.

In the context of statistical learning theory, bands (usually referred to as axis-
aligned hyperrectangles) are objects of low complexity: the VC dimension of the set
of all bands in Rd is 2d. Thus, in light of Theorem 1, if the concept class Λ to which
λpSq belongs consisted only of bands, then λpSq would be learnable.

For a given set λpSq, we have defined rλpSqs to be the smallest band containing
λpSq. Abusing notation, we will now specifically use rpλM s to denote the algorithm
that reports the smallest rectangle that contains all of the elements of the sample
tλpθmqu

M
m“1 that have positive labels (as opposed to the ‘banded’ version of an

arbitrary algorithm pλM ). This algorithm keeps track of the maximum and minimum
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value of the random draws in each dimension (provided those draws are in the set
we want to learn), and it is typically used for learning bands.

Definition 2 (Learning Algorithm for Bands). Given a sample θM ” pθ1, . . . , θM q

with labels lM ” plpθ1q, . . . , lpθM qq, let rpλM s denote the algorithm that reports

rpλM s ”
d

ą

j“1

„

min
m|lpθmq“1

λjpθmq, max
m|lpθmq“1

λjpθmq



,

where λjpθq is the jth coordinate of λpθq.

Note that if there is no draw θm for which lpθmq “ 1, the algorithm above outputs
the empty set.13

Can the algorithm rpλM s learn rλpSqs in a sense analogous to 1? To be more
precise, we would like to know if there exists a function mpε, δq such that

P
´

LprpλM s; rλs, P q ă ε
¯

ě 1´ δ, (3)

for any distribution P on Θ, and for any λ P Λ, provided M ě mpε, δq and assuming
the true labels are generated according to λ? This last point is important, because if
the true labels were generated by rλs, then Theorem 1 would imply the existence of a
learning algorithm (and in fact, rpλM s would be one such algorithm).14 Unfortunately,
Theorem 2 shows that even if we allow ourselves to compute misclassification error
relative to rλs, learning is still not possible due to two different features of the
problem: a) the richness of the class of probability distributions under consideration,
and b) the fact that the true labels are generated by λ and not rλs.

Theorem 2 (Impossibility of Learning Bands). Suppose there exists a concept λ P Λ

that is not a band; that is rλszλ ‰ H. Suppose further that there exists a probability
distribution that places arbitrarily large mass on the set rλszλ. That is, for any
η P p0, 1q there exists Pη over Θ such that:

Pη pλpθq P rλszλq ě η.

13To keep the notation as simple as possible, we have decided not make dependence of the algorithm
rpλM s on the sample θM and the labels lM explicit. If confusion arises, we shall write rpλM spθM , lM q,
but we remind the reader that rpλM s is only used to denote the algorithm in 2, and not the banded
version of some arbitrary algorithm.
14To see this, simply let S be rλs, and let λp¨q be the identity. Therefore, the concept class Λ
becomes the set of all bands, which has finite VC dimension and, by Theorem 1, is learnable.
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Under the assumptions above, rpλM s cannot learn rλpSqs in the sense of (3). More-
over, there is no algorithm pλM (that outputs bands or any other set) that both (i)
returns the empty set whenever lpθmq “ 0 for all m “ 1, . . . ,M and (ii) satisfies

P
´

LppλM ; rλs, P q ă ε
¯

ě 1´ δ,

for any distribution P on Θ, and for any λ P Λ, provided M ě mpε, δq and assuming
that the true labels are generated by λ.

Proof. See Appendix A.3.

Theorem 2 assumes that the true labels are being generated by λ instead of by
S. As we mentioned in the introduction this is typically infeasible, unless we make
additional assumptions (for example, assuming injectivity of λp¨q, in which case we
could check whether λpθq P λ simply by checking if θ P S). Theorem 2 shows that
even if we had access to labels generated by λ, no algorithm could learn rλs.

2.3 Learning rλpSqs from the inside

Theorem 1 gives a necessary and sufficient condition for learnability. Surprisingly,
Theorem 2 demonstrates that even when we focus on algorithms that output bands
(and thus allow us to ignore the complexity of Λ), learning continues to be difficult,
even if misclassification error is defined relative to the tightest band and not the true
set. We think the result is surprising because bands have finite VC dimension, and
thus should be learnable.

Theorem 2 shows that the richness of the class of probability distributions for
which (3) must hold is one of the determinants of the impossibility result. It is also
crucial that we have introduced a difference between the true set and the tightest
band containing it (in particular, misclassification error is computed relative to rλs,
but the true labels are generated by λ). If we allow probability distributions that
place arbitrarily large mass on the difference between rλs and λ then, with high
probability, we will get samples with only 0-labels. As we showed above, this would
lead to an arbitrarily large misclassification probability.

To further illustrate the difficulties in learning rλs consider the following example.
Suppose

Λ “ tra, bs|a ď bu Y tr0, 1s Y t2uu.
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That is, the concept class is the set of all intervals ra, bs and an additional set
formed by attaching t2u to the r0, 1s interval. It can be shown that the VC dimension
of Λ is finite and thus, by Theorem 1, there exists an algorithm that learns the class.

Consider now the learning requirement in (3), which computes misclassification
error relative to rλs, but assumes that the true labels are generated using λ. Suppose
that the true set generating labels is λ “ r0, 1sYt2u, which differs from the smallest
band containing this set; as rλs “ r0, 2s. Consider a probability distribution P that
places all of its mass on rλszλ “ p1, 2q. Then, any sample from this distribution will
have only zero labels (as the true labels are generated by λ “ r0, 1sY t2u). This is a
problem for rpλM s because this algorithm reports the empty set absent positive labels.
This implies that the misclassification error relative to r0, 2s is 1. This argument is
the essence of Theorem 2.

A natural question to ask is whether an algorithm different to rpλM s can fare
better. Theorem 2 answered this question in the negative, provided we focus on
algorithms that report the empty set whenever the sample does not contain positive
labels. In our simple example it is possible to show that, even if we consider an
algorithm that outputs an arbitrary set absent positive labels, learning in the sense
of (3) is not possible. We do this in A.6. A key restriction that we continue to
impose is that the set reported when there are no positive labels, does not depend
on the sampled λ’s.

One way to get around this problem, is to restrict the class of distributions that
the econometrician can use to conduct random sampling from S. In particular, we
define the set

PpSq ” tP | P is a distribution on Θ and P pSq “ 1u .

Note that PpSq is the collection of all probability distributions that sample from
inside the set S, and thus from inside the parameter region λpSq. This means that
for any P P PpSq, if λ is the true set, then P pλpθq P λq “ P pθ P Sq “ 1 and therefore
P pλpθq P rλszλq “ 0. We use this class to relax the learning desideratum presented
in 1.15

In general, it is non-trivial to obtain draws from inside of the set S. In specific
15Another way to get around this problem would be to restrict λpSq to be a subset of a compact
set, to have nonempty interior, and to assume that the density of the random draws is bounded
away from 0 on the compact set. We chose to not follow this path, as simply restricting P to be in
PpSq still allows us to conveniently leverage results from the statistical learning literature.
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applications, such as SVARs, there are algorithms that address this problem (see
Algorithm 1 of Amir-Ahmadi and Drautzburg (2020)). In some other applications,
such as the text analysis problem described in the Appendix B and in Ke et al.
(2019), it is still possible to suggest algorithms to draw from inside S.

We also think that a plus of our theory (not a con) is that it is not important to
receive any information on how many points in total (from both inside and outside
the set S) end up being sampled. The accuracy of the approximation only depends
on how many points are obtained from the inside.

In some applications, S can be lower dimensional compared to the parameter
space Θ (think, for example, of SVARs with equality restrictions). This raises the
question of whether it is possible to sample from inside S. We think that whether or
not it is a daunting task to sample from inside a lower dimensional set really depends
on the application. For the SVAR application with equality restrictions, the set S
is lower dimensional compared to Θ, but one can still generate draws from the set
by imposing equality restrictions (see for example how the robust Bayes algorithm
of Giacomini and Kitagawa (2018) deals with equality restrictions).

3 provides an explicit formula for the number of draws that suffice to learn the
set rλpSqs from the inside. The formula depends on accuracy parameters (ε, δ), and
on the dimension of the space where λpθq lives, which we have assumed to be Rd.
The theorem also provides a formula for the number of draws that are necessary to
learn rλpSqs.

Theorem 3. The algorithm rpλM s in 2 learns rλpSqs from the inside, whatever shape
λpSq has. That is there exists a finite function mpε, δq such that for any 0 ă ε, δ ă 1:

P
´

LprpλM s; rλpSqs, P q ă ε
¯

ě 1´ δ,

for all distributions P P PpSq on Θ, and whatever the shape of λpSq is, provided
M ě mpε, δq. Moreover, the sample complexity of the algorithm – that is, the smallest
function m˚pε, δq that makes learning from the inside possible – admits the upper
bound:

m˚pε, δq ď mint2d lnp2d{δq , expp1qp2d` lnp1{δqqu{ε,

and, if λpSq contains at least two different points, the lower bound:

p1´ εq ln p1{δq {ε ď m˚pε, δq.
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If, in addition, λpSq satisfies 3 stated in A.4, and if ε, δ ď 1{8, then

p3{16qd{ε ď m˚pε, δq.

Proof. See Appendix A.4.

The upper bound on the sample complexity, m˚pε, δq, provides a very concrete
recommendation on the number of draws that suffice to learn the set rλpSqs from
the inside. For example, in the context of a sign-restricted SVAR, the upper bound
to learn the tightest band that contains any k coefficients of the impulse response
function is mint2k lnp2k{δq, expp1qp2k`lnp1{δqqu{ε draws. For ε “ δ “ 0.01 (misclas-
sification error of at most 1% with probability 99%) and k “ 25 the recommendation
of 3 is that 14,844 draws of impulse response coefficients that satisfy the sign restric-
tions are sufficient to learn.16 The lower bound also reveals the number of draws
that are necessary to learn. In the context of the SVAR application the number
equals 469 draws.

The necessary and sufficient conditions for the number of draws in 3 only depend
on pε, δq and the dimension in which the parameter region λpSq lives. There is no
specific reference to either the set S nor the function λp¨q. This is a feature of
the ‘learning bounds’ provided in the statistical learning literature, and typically
reported as part of the Fundamental Theorem of Statistical Learning. The proof of
our main theorem is based on the idea that bands, which have a VC dimension of
2d, are learnable using the algorithm we described in 2. Our proof is not a corollary
of existing results in the statistical learning literature, but is based on tools and
techniques that are used there. In particular, we used the general construction for
a lower bound provided in Blumer et al. (1989) and the specific upper bound they
report for rectangles in R2. We then sharpened the lower bound using arguments
in Ehrenfeucht et al. (1989) that refer to general learning problems. In order to
obtain an upper bound Opdq we relied on the results of Auer et al. (1998), which are
specific to learning axis-aligned rectangles. Finally, we note that bounds reported in
3 seem to be consistent with state-of-the-art VC bounds in the statistical learning
163 implies that if one hasM draws of θ, m˚pε, δq of them must come from inside of S. This means
that one should choose M such that

řM
i“1 lpθiq equals the upper bound on m˚pε, δq.
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literature.17

We understand that it might be difficult for the researcher to take a stand on
his/her desired combination of ε and δ. Unfortunately, our theory does not provide
a concrete recommendation for choosing these tuning parameters (despite attaching
a very specific meaning to them). Our bound can still be of practical use in those
cases. For any number of draws the researcher is willing to take, we can associate
all possible combinations of (ε, δ) that would make our upper bound return such
a number. We refer to such mapping as an “iso-draw” curve and we display it in
Figure 2 for a parameter region of dimension d “ 25. Our recommendation for
practitioners is to report the iso-draw curve associated to however many draws are
feasible in their specific application.

The theorem in this section differs quite substantially from those that one would
usually see in the statistical learning literature. Instead of trying to learn the true
set, we are trying to learn a crude approximation of it. This approximation can be
learned, even though we only have labels for λpSq and not rλpSqs. The price that
we pay for this, is that we can only guarantee learning for distributions that draw
from inside λpSq.

Note that the bounds on the sample complexity grow linearly with the dimension
of the set we are trying to learn (d), not the set in which the labels are generated
ppq. Clearly when λ lives in a lower dimensional space, this can substantially reduce
the number of draws required to learn. Note also that the bounds are tight in the
sense that they are both of order Oppd` lnp1{δqq{εq.18

2.4 Hausdorff distance between rpλM s and rλpSqs

An important concern about 3 is the usefulness/interpretation of the concept of
learnability.

Our result is silent about the choice of P , and unfortunately, certain choices of
P in combination with certain shapes of λpSq can lead to a large Hausdorff distance
17For example, Theorem 6.8 in Shalev-Shwartz and Ben-David (2014) shows that there exist con-
stants C1, C2 such that a class of concepts with VC dimension equal to d is PAC learnable with
sample complexity

C1rd` lnp1{δqs{ε ď m˚pε, δq ď C2rd lnp1{εq ` lnp1{δqs{ε.

Because we focus on learning bands, we are able to remove the lnp1{εq term from the upper bound
and characterize the constants C1, and C2.
18To see this, note that the lower bound can be bounded below by p3{36qplnp1{δq ` 2dq{ε, as

maxtx, yu ď 1{2px` yq.
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Figure 2: Iso-draw curves. For a fixed M , the combinations of pε, δq such that
M “ mint2d lnp2d{δq, expp1qp2d` lnp1{δqqu{ε. In this example d “ 25.

between the sets rλpSqs and rpλM s, even when misclassification error is low. In this
section we illustrate this point by means of two simple examples. We describe the
first example analytically, and then we explain the second with a figure.19

In this section we also try to present a slightly more constructive result. We argue
that if the Hausdorff distance between sets replaces misclassification error as the loss
function, it is theoretically possible to deem some choices of P better than others.
Specifically, we show that for certain distributions, a random sampling approxima-
tion that yields a low misclassification error also yields a low worst-case relative
Hausdorff distance (in a sense made precise). In fact, under some assumptions, we
show that the relative Hausdorff distance is bounded above by the misclassification
19We would like to thank an anonymous referee for suggesting these examples.
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error.

2.4.1 Certain choices of P and some sets λpSq lead to a large
Hausdorff distance

In order to introduce our examples we start by focusing on the Hausdorff dis-
tance between rλpSqs and rpλM s, but relative to the ‘worst-case’ distance that can be
attained over the different shapes rpλM s. The worst-case relative Hausdorff distance
between rλpSqs and rλ̂M s is

d̃H

´

rλpSqs, rλ̂M s
¯

”

dH

´

rλpSqs, rλ̂M s
¯

supbĎrλpSqs dH prλpSqs, bq
, (4)

where dHpA,Bq is the Hausdorff distance between sets A, B, and b denotes a band
(i.e., a set of the form ˆdj“1rrj , rjs) contained in rλpSqs.20 We use this normalization
to measure misclassification error and Hausdorff distance on the same scale (the
r0, 1s interval).

Suppose that set S contains two points λ1 and λ2. Set λp¨q to be the identity so
that λpSq contains only two real numbers; that is λpSq “ tλ1, λ2u, with λ1, λ2 P R.
Suppose further that λ1 ă λ2.

In this case, the smallest band containing λpSq is given by rλpSqs “ rλ1, λ2s. The
measures that we are interested in, place all of their mass on λpSq. Thus, distribu-
tions of the form P pλ1q “ p and P pλ2q “ 1´p, exhaust the list of distributions that
can be used to learn from inside.

Given M i.i.d. draws from these distributions, there are only three possible
shapes that the algorithm rpλM s can output: (i) the interval rλ1, λ2s, (ii) the point λ1,
or (iii) the point λ2. A direct calculation shows that the Hausdorff distance between
these sets and true set rλpSqs is (i) 0, (ii) λ2 ´ λ1, and (iii) λ2 ´ λ1, respectively.

Since λ1 ă λ2 by assumption, the worst-case Hausdorff is λ2 ´ λ1. Therefore,
the relative Hausdorff distance, d̃H

´

rλpSqs, rλ̂M s
¯

, is (i) 0, (ii) 1, or (iii) 1. On the

other hand, misclassification error between rλpSqs and rpλM s is (i) 0, (ii) 1 ´ p, or
20For two sets A, B in Rd and a norm d in Rd, we define their Hausdorff distance as

dHpA,Bq ” max

"

sup
aPA

inf
bPB

dpa, bq, sup
bPB

inf
aPA

dpa, bq

*

(Rockafellar and Wets, 1998, p. 117). Throughout the paper we take dpa, bq to be the sup-norm in
Rd.
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(iii) p.
Suppose now that we choose a probability distribution with p “ 0 (this type of

distribution is allowed in 3), so that we only draw λ2. In this case, the only possible
output the algorithm will give is rpλM s “ λ2, regardless of the number of draws.

The probability of misclassifying a point drawn at random from a measure with
p “ 0 is 0; as the only point that will ever be drawn is λ2 and such point is always
contained in the set. Thus, misclassification error will be less than ε, for any ε, with
probability 1 for any number of draws. The relative Hausdorff distance, however,
will be 1 for every sample of points.

2.4.2 Certain choices of P can lead to a small Hausdorff dis-
tance

The example above showed that certain choices of P can lead to a large distance
between the sets rλpSqs and rpλM s even when misclassification error is low. One could
argue that the large Hausdorff distance between the sets is not an intrinsic feature of
the example we presented, but rather a consequence of a poor choice of distribution
to generate the random sampling approximation. In this subsection we will present
a more general theoretical result showing there are some probability measures for
which a low misclassification error yields a low relative Hausdorff distance.

We do want to argue, however, that choosing a good probability measure to gen-
erate random samples might be infeasible for some sets λpSq. For instance suppose
that the true set λpSq is given by the shaded area in Figure 3. Suppose that we
generate random samples by using a continuous distribution on R2 and we censor
the distribution to obtain draws from the shaded region (by discarding all draws
that are not in the shaded area). In this case, our suggested approximation will al-
ways miss the thin strip. Since this strip has probability zero under any continuous
distribution, it will not be relevant from the perspective of misclassification error,
but, unfortunately, it will be quite important in computing the Hausdorff distance
between rpλM s and rλpSqs.

It is perhaps possible to rule out examples like the one above by restricting λpSq
to have topological properties such as being a connected set with non-empty interior.
We think that a result showing that the Hausdorff distance between rλpSqs and rpλM s
for a large class of probability measures would definitely be of practical interest. We
were not able to derive this type of result for Hausdorff distance, but we can at least
say something constructive for the relative Hausdorff distance in (4).
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λpSq

Figure 3: A true set λpSq for which it is not possible to control Hausdorff distance
using a continuous probability distribution.

In order to derive this result, we first make an assumption on the shape of the
set λpSq:

Assumption 1. The projection of λpSq into its ith coordinate

pipλpSqq ” tx P R | x “ λi, λ P λpSqu,

(where λi denotes the ith coordinate of λ) is a bounded interval rri, ris.

1 holds, for example, when λpSq is an (axis-aligned) rectangle; but it is also true
for other shapes (for instance, λpSq could be a circle or some convex set).

We now make an assumption on the distribution P (which, as required by 3
places all of its mass on the set S). We remind the reader that the tightest band
containing λpSq was defined as rλpSqs ” ˆdi“1rri, ris.

Assumption 2. The distribution P on S has the following property: for any set
rai, bis Ď pipλpSqq and any coordinate i:

P pλipSq P rai, bisq “
bi ´ ai
ri ´ ri

.

That is, we focus on the distributions P that induce a uniform distribution over
the projection pipλpSqq.
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2 holds, for example, when λpSq is an (axis-aligned) rectangle and P is the prod-
uct of independent uniform marginals.21 In general, however, there is no guarantee
that such a distribution exists.

Proposition 1. Let Assumption 1 and Assumption 2 hold. Then for any sample of
size M

d̃H

´

rλpSqs, rλ̂M s
¯

ď LprpλM s; rλpSqs, P q,

where d̃H is the relative Hausdorff distance defined in (4).

Proof. See Appendix A.5.

Proposition 1 shows that the worst-case relative Hausdorff distance in (4) is
bounded above by the misclassification error between rλpSqs and rλ̂M s. That means
that if the misclassification error is smaller than ε, then the worst-case Hausdorff
distance is also smaller than ε. A direct corollary of 3 is that whenever the number
of draws is above our upper bound, then the probability of the worst-case relative
Hausdorff distance being below ε is at least 1´ δ.

3 Applications to SVARs

As an illustrative example, we consider a simple 3-variable monetary SVAR that
includes the GDP Deflator (pt), GDP (gdpt), and the Federal Funds rate (it). The
variables have quarterly frequency and the sample period is October 1982 to October
2007.22 The model is given by

yt “ µ`A1yt´1 ` ¨ ¨ ¨A4yt´4 `Bεt,

where εt are the structural innovations, distributed i.i.d. according to some unknown
distribution F , with EF rεts “ 03ˆ1, EF rεtε1ts “ I3 for all t “ 1 ¨ ¨ ¨ , T . B is an
unknown 3ˆ 3 matrix and

yt “ pln pt, ln gdpt, itq.

212 may also hold in other cases. For example, Perlman and Wellner (2011) show the existence
of such measures on the unit circle of dimension d ď 3 (check), and discusses complications with
finding distributions that satisfy 2 and additional symmetry properties in higher dimensions.
22The FRED codes are: GDPDEF, GDP, and DFF.
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The object of interest is the vector of dynamic impulse response coefficients of the
natural logarithm of the GDP deflator to a monetary policy shock. The kth period
ahead structural impulse response function of variable i to shock 3 (which we assume
to be the monetary policy shock) is defined as

λk,i,3pA, bq “ e1iCkpAqb, (5)

where ei denotes the ith column of I3, A ” pA1, . . . , A4q, and b is the third column
of B.23

Without further restrictions, time series data on yt allow the econometrician
to consistently estimate A and Σ “ BB1, but not B. There are, in principle, many
matrices B such that BB1 “ Σ, and thus many structural impulse response functions
that can be rationalized by the data. Consequently, it is common in the applied
macroeconomics literature to use equality and sign restrictions in an attempt to
identify the structural IRF’s in (5). If the restrictions allow the econometrician to
map pA,Σq into only one matrix B, the SVAR is said to be point-identified. If the
map is one-to-many, the SVAR is said to be set-identified.

3.1 Summarizing the identified set in set-identified SVARs

Consider first a SVAR set-identified by means of the sign restrictions on the
contemporaneous impulse response coefficients, displayed in Table 1.

Series Contractionary MP Shock
ln pt -
ln gdpt -
it +

Table 1: Restrictions on contemporaneous responses to a contractionary monetary
policy shock. ‘-’ stands for a negative sign restriction and ‘+’ for a positive sign
restriction.

Given the least-squares or Maximum Likelihood estimators p pA, pΣq we would like
to describe the set of all dynamic responses of ln pt to a contractionary monetary
23CkpAq is defined recursively by the formula C0 ” I3, and

CkpAq ”
k
ÿ

m“1

Ck´mAm, k P N,

with Am “ 0 if m ą 4; see Lütkepohl (1990, p. 116).
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policy shock that are consistent with the parameter estimates.
In this example, we are imposing restrictions on only the third column of B,

denoted b, and we are only interested in impulse responses with respect to the third
shock. Therefore, we define the identified set – the set of vectors b that satisfy the
sign restrictions – as:

S ”
!

b P R3
ˇ

ˇ

ˇ
b1pΣ´1b “ 1, and b satisfies the sign restrictions in Table 1

)

.

The parameter region of interest is the impulse responses’ identified set for horizons
h “ 0, 1, . . . , 16, defined as:

λpSq ”
!

pλ0, λ1, λ2, . . . , λ16q P R17
ˇ

ˇ

ˇ
λk “ λk,i,3p pA, bq, b P S

)

.

Whilst λpSq is typically thought of as a frequentist object, Moon and Schorfheide
(2012) (p. 757) recommend reporting the impulse responses’ identified set even in
Bayesian applications.

We argue that in this example λpSq is injective under mild assumptions. Each
impulse response coefficient, λk,i,3 is a linear combination of the vector b – the linear
combination given by the vector Ckp pAq1ei. It then suffices to have at least 3 of these
vectors that are linearly independent. In our example, the first three periods provide
such linearly independent vectors.24

Algorithm 2 of RRWZ can be used to sample at random from inside the set
S to describe λpSq. Let M be the desired number of draws from the inside. Set
M 1 “ 0. (1) Draw a standard normal 3 ˆ 3 matrix N and let N “ QR be the
QR decomposition of N with the diagonal on R normalized to be positive. (2) Let
B “ cholppΣqQ, and generate the impulse responses using (5). (3) If the impulse
responses do not satisfy the sign restrictions, discard the draw. Otherwise increment
M 1 by 1. Return to step 1. (4) Repeat until M 1 “M .

Setting ε “ δ “ 0.1 and d “ 17 and evaluating the upper bound in 3, the number
of draws, M , that we would require from inside the identified set is

mint2d lnp2d{δq, expp1qp2d` lnp1{δqqu{ε “ 987.

Thus, in order to ensure a misclassification error of less than 10% with probability
24Suppose there are three linearly independent vectors w “ rw1, w2, w3s. Then, the corresponding
impulse response coefficients will be w1b where w1 P R3. Then, there exists only one vector b̃ that
satisfies the equation w1b̃ “ w1b.
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90%, our result suggests to stop the algorithm once we have obtained 987 draws of
B that satisfy the sign restrictions.25

Figure 4 displays the bands on the identified set for the response of inflation to
a contractionary monetary policy shock. For each horizon, we report the minimum
and the maximum value of the response of ln pt over the draws of B that satisfy the
sign restrictions (this is exactly the algorithm rpλM s we described in 2).
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Figure 4: The tightest band that contains the identified set. The parameter region
λpSq is defined as the dynamic responses of ln pt to a contractionary monetary policy
shock on impact and for 16 quarters after impact. The sufficient number of draws
from inside the parameter region required to learn, for ε “ δ “ 0.1 and with d “ 17,
is 987. These bands are plotted in red. Bands constructed using 100 draws from
within λpSq are plotted in blue.

In models with tight restrictions, using the RRWZ algorithm to generate draws
25To the best of our knowledge there are no theory-based suggestions on how many draws are
required to stop the RRWZ algorithm, which is perhaps the most popular approach to generate
draws from inside the identified set in SVARs. Canova and Paustian (2011), p. 351, recommend
a fixed number of 15,000 draws from inside the identified set. Kilian and Lütkepohl (2017), p.
432, recommend re-estimating the identified set with different seeds of a Gaussian random number
generator, and increasing the number of draws if different seeds lead to qualitatively different
results. There are no existing results in the literature that allow us to quantify whether 15,000
total iterations of the RRWZ algorithm are too many or too few draws. The point of our paper
is that the theory herein presented allows us to connect these number of draws with a tolerance
for misclassification error (ε) and for the likelihood such misclassification error being below the
tolerance (δ). In addition, we have showed in Proposition 1 that certain choices of P will also
control the (worst-case relative) Hausdorff distance.
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of B that satisfy the sign restrictions and fall inside the identified set can be chal-
lenging. Amir-Ahmadi and Drautzburg (2020) propose an alternative algorithm for
partially identified models, in which all draws of B satisfy the sign restrictions, and
fall inside S.

As an alternative to random sampling, one can solve for the tightest bands con-
taining the identified set by solving constrained maxima/minima problems at each
horizon

min
θPS

λhpθq and max
θPS

λhpθq.

This approach, however, can be difficult to implement. The bounds are defined by
nonlinear programs with choice sets that need not be convex.

In our specific SVAR application, we can use the algorithm suggested by Gafarov
et al. (2018) to evaluate the bounds of the estimated identified set and compare
our random sampling approximation with the ‘true’ bounds.26 In principle, the
discussion in 2.4 suggests that there is no guarantee whatsoever that the Hausdorff
distance between these sets will be small, as the probability distribution we have
used to generate the random samples does not satisfy 2 (and there is not an obvious
way of how to enforce this property).

Figure 5 plots both the analytical bands and the bands generated by 100 draws
(chosen ad-hoc) and our recommendation of 987 draws from inside, which are suffi-
cient to learn when ε “ δ “ 0.1 and d “ 17, according to 3. The figure suggests that
the Hausdorff distance between the sets is actually small. The relative Hausdorff
distance is 0.0284, well under the misclassification error of 0.1.

In order to establish a connection between Figure 5 and Proposition 1, Figure 6
reports the empirical c.d.f. of the marginal distributions associated with the measure
we used to create the random samples. The support of the distributions has been
normalized to the unit interval, and the figure also plots the c.d.f of a uniform
random variable for comparison. Proposition 1 shows that whenever these marginals
are uniform, then the (worst-case relative) Hausdorff distance will be at most equal
to the misclassification error. The probability distribution we used to sample from
inside does not have uniform marginals, but the difference does not seem to be that
large. This might explain why the approximation (in terms of Hausdorff distance)
performs reasonably well.

To close this subsection, we discuss another econometric procedure that could
26We remind the reader, however, that their algorithm is only defined for SVAR models with
restrictions on one structural shock.
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Figure 5: Analytical bands of Gafarov et al. (2018) are plotted in black. Bands
generated using ryλM s using 100 draws (blue) and 987 (red) that satisfy the sign
restrictions. 987 draws is sufficient to support ε “ δ “ 0.1, with d “ 17.

have been used to estimate the bounds of the identified set. Giacomini and Kitagawa
(2018) develop a robust Bayes algorithm to compute bounds on the identified set that
uses a maximization problem. Their algorithm is more general than that in Gafarov
et al. (2018), as it covers problems with restrictions on multiple shocks. However the
maximization problem they define is non-convex and may be difficult to implement
numerically (as the authors acknowledge). In fact, their paper suggests an alternative
implementation (Algorithm 2 p. 30) usingK random draws. This is done to alleviate
concerns about the convergence properties of the numerical optimization in their
baseline robust Bayes algorithm.

Our results can help practitioners choosing the number of draws to evaluate the
bounds of the identified set. In particular, our theory provides a specific recommen-
dation of K for each specific choice of pε, δq. Conversely, for each choice of K (for
example, K “ 1000), an iso-draw curve provides a combination of pε, δq that are
compatible with the number of draws specified by the user.

3.2 Summarizing a Wald Ellipse in point-identified SVARs

Consider now a SVAR where the dynamic responses to a monetary shock are
point identified using two exclusion restrictions: namely, neither output nor prices
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Figure 6: Empirical c.d.f. (solid, blue) of the marginal distributions at h “ 0, . . . ,
16. The support has been normalized to the unit interval. The c.d.f. of the uniform
distribution is plotted in dotted, black.
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are affected by a monetary policy shock upon impact.27 Under such an identification
scheme, the vector of 17 impulse responses, denoted γ, can be estimated consistently.
The goal here is to summarize a Wald ellipse reporting shotgun plots as in Inoue
and Kilian (2016) (IK henceforth).

Define the Wald statistic

W pγq “ pγ ´ γ̂T q
1
pΣ´1pγ ´ γ̂T q,

where γ̂T is the least squares estimator of γ and pΣ is the estimator for Σ suggested
by IK based on bootstrap draws of pγT . Consider the Wald ellipse

S ” tγ P R17 |W pγq ď cαu,

where the critical value cα is computed using the procedure outline in p. 425 of IK.
Note that in this example, λ is the identity (which is injective) and rSs is simply the
projection of the Wald ellipse onto each of its coordinates.

The algorithm to report shotgun plots suggested by IK can be thought of as a
particular implementation of the algorithm in 2: a value of γ is drawn at random
(using the residual bootstrap) and plotted only if it belongs to S. We can suggest a
number of γ-draws by pretending that the goal of the shotgun plots is to learn the
parameter region rSs.

Figure 7 displays shotgun plots for the response of inflation to a contractionary
monetary policy shock, where 100, and 2000 total draws are used, which for a 68%

confidence interval corresponds to 68 and 1360 draws from inside S respectively. IK
rely on 2000 total γ draws, corresponding to 1360 draws from inside S. Instead of
choosing specific values of pε, δq, Figure 8 displays the iso-draw curve for M “ 1360,
all possible combinations of accuracy parameters that could be supported using 1360
γ draws from inside the parameter region.

In situations where it may be difficult to target a certain number of draws, one
can report an iso-draw curve to demonstrate the accuracy of the approximation.

3.3 Highest posterior density credible set in SVARs

Consider again the point-identified model described in the previous subsection.
Suppose now that we are interested in constructing the highest posterior density
27This recursive identification scheme is implemented by setting B “ cholpΣ̂q.
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Figure 7: Shotgun plot of the 68% joint confidence region of the dynamic response of
ln pt to a monetary policy shock. blue and red lines represent 68 and 1, 360 draws
from inside S, respectively. black lines represent the minimum and maximum
(pointwise) at each horizon.

(HPD) credible set for the dynamic structural impulse responses of ln pt to a mon-
etary shock. Denote ppγ | yT q as the posterior density of the dynamic structural
impulse responses given data yT . The 100p1´ αq% HPD credible set is

S “ tγ P R17 | ppγ|yT q ě cαu,

where cα is defined as the largest constant such that ppS|yT q ě 1´α. In this example
λp¨q is again the identity which is injective. We construct the HPD credible set as
in Inoue and Kilian (2013, 2019). We assume a diffuse Gaussian-inverse Wishart
prior for the reduced-form VAR parameters θ, which leads to a conjugate posterior
which can be easily drawn from. We take N draws of reduced-form parameters, and
compute the impulse responses and their posterior density. The 100p1´ αq highest
posterior density credible set is then the M “ 100p1´ αqN impulse responses with
the highest posterior density.

Figure 9 displays the HPD credible set for α “ 0.32, and N equal to 100 and
2000, corresponding to M equal to 68 and 1360 respectively. With 1360 draws from
inside λpSq, Figure 8 from the previous subsection corresponds to the iso-draw curve
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Figure 8: ‘Iso-draw’ curve for M “ 1, 360 and d “ 17.

for this application.
The procedure described above for approximating parameter regions that arise

from highest-posterior density sets can be readily extended to parameter regions
defined by level sets of criterion functions; such as likelihoods, quasi-likelihoods, or
profiled versions of them.

The work of Chen et al. (2018) (henceforth CCT) – who provide computationally
attractive procedures to construct confidence sets for identified sets in a general class
of models – is a notable example where these types of parameter regions arise. Let
θ be the full set of structural parameters of a model and let Θ be the parameter
space. To allow for subvector inference write θ “ pµ, ηq and suppose that the object
of interest is constructing a confidence set for the identified set of the parameter µ.
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Figure 9: 68% highest posterior density credible set for the dynamic response of ln pt
to a monetary policy shock. blue and red lines represent 68 and 1, 360 draws from
inside S, respectively. black lines represent the minimum and maximum (pointwise)
at each horizon.

The procedure recommended by CCT takes the form

CS1´α “ t µ|pµ, ηq P Θ and gpµq ě ζmcα u

(see Procedure 2 in p. 1973 of CCT and Equation (13)), where gpµq is a profiled
criterion at a point µ (for example, the value of the criterion function at µ after η
has been profiled out) and ζmcα is the 1 ´ α quantile of a profiled criterion function
based on posterior draws of θ.

Now, suppose that b “ 1, . . . , B posterior draws of θ had been used to compute
ζmcα . By definition, p1 ´ αqB of these draws will be inside CS1´α, the parameter
region of interest. If µ has dimension d, the smallest band containing CS1´α is
simply

rCS1´αs “

d
ą

i“1

„

min
µb|gpµbqěζmcα

µi,b , max
µb|gpµbqěζmcα

µi,b



,

where µi,b denotes the ith coordinate of the bth draw of µ. Our 3 immediately gives
either (i) a combination of pε, δq that can be supported by the resulting p1 ´ αqB

draws or (ii) a recommendation of how many more posterior draws are necessary to
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attain a particular combination of pε, δq to control misclassification error. There is
still the question of how many draws, B, should be used to compute ζmcα .28

4 Conclusion

We showed that sampling at random from a parameter region in order to describe
it, can be framed as a supervised (machine) learning problem. We used concepts
from the supervised learning literature – misclassification error, sample complexity,
and the definition of learning itself – to provide some practical guidance on two
issues. First, how to think about the accuracy of a random sampling approximation
to a parameter region. Second, how many random draws are necessary/sufficient to
learn it.

We started by formalizing an obvious observation: parameter regions can be
learned if and only if they are not too complex. This result binds often, as some
assumptions that are typically imposed to simplify the analysis of econometric prob-
lems, do not simplify the supervised learning problem.

We circumvent the impossibility result by introducing two modifications to the
standard definition of learning.

First – in order to avoid making assumptions about the shape of the parameter
region of interest – we focus on learning the tightest band that contains it. This is
done by computing misclassification error relative to the tightest band that contains
the parameter region, instead of the true set. Bands are convenient, for they are
already used to summarize uncertainty in the econometric models used as our main
illustrative example.

Second, we restrict the class of probability distributions that both the econome-
trician and the oracle can consider. In particular, we restrict the econometrician to
sample from inside the parameter region of interest.

Under these two modifications – which simplify the learning desiderata – we show
that the tightest band containing the parameter region of interest can be learned
from the inside. Our learning algorithm keeps track of the largest and smallest
values of the parameter of interest in each of its dimensions. We show that learning
from the inside requires at least max tp1´ εq ln p1{δq , p3{16qdu {ε draws, but at most
28We think, however, that the results in Belloni et al. (2009) could potentially be used to address
this point. In particular, their Theorem 3, p. 2031 has a recommendation on the length of the burn-
in sample and post burn-in samples in terms of some functions of the target distribution (i.e., global
conductance) and the starting distribution for the chain (i.e., the variance of this distribution).
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mint2d lnp2d{δq, expp1qp2d ` lnp1{δqqu{ε draws. In both cases, the random draws
have to come from inside the parameter region. We also note that d is the dimension
of λpΘq not of Θ (which in our examples has a higher dimension).

We used SVARs to showcase the application of our bounds. We considered the
problem of describing the identified set in a set-identified SVAR and also the problem
of reporting shotgun plots for both frequentist and Bayesian simultaneous inference
on impulse responses. We used the bounds directly and indirectly. Directly, to
provide a concrete recommendation of the number of draws required for a given ε

and δ. Indirectly, by constructing iso-draw curves; given a number of draws M ,
the iso-draw curve collects all combinations of pε, δq that yield M as the sufficient
number of draws. Our recommendation for practitioners is to report the iso-draw
curve associated to however many draws are feasible in their specific application.
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A Appendix A

A.1 VC dimension

Given a nonempty class Λ Ď 2R
d and a finite set of points λpSq Ď Rd, let

ΠΛpλpSqq denote the set of all subsets of λpSq that can be obtained by intersecting
λpSq with a concept λ P Λ, that is:

ΠΛpλpSqq “ tλpSq X λ | λ P Λu.

If ΠΛpλpSqq “ 2λpSq, then we say that λpSq is shattered by Λ.

Definition 3 (Vapnik–Chervonenkis Dimension). The Vapnik–Chervonenkis (VC)
dimension of a concept class Λ, denoted VCdimpΛq, is the cardinality of the largest
finite set of points λpSq that can be shattered by Λ.

If arbitrarily large finite sets are shattered, the VC dimension of Λ is infinite.
Our presentation of shattering and VC dimension follows Blumer et al. (1989) p.
934. An alternative reference is Dudley (1999), p. 134.29

A.2 Proof of Theorem 1

Proof. First we will show that if Λ is trivial – in the sense of either containing only
one concept or two disjoint concepts that partition λpΘq – we always have learning
in the sense of 1.

Suppose that Λ contains only one concept. An algorithm that reports only this
concept will always have a misclassification error of zero and thus satisfies 1, for any
M ě 0.

Suppose Λ contains only two disjoint concepts λ1 and λ2, such that λ1 Y λ2 “

λpΘq. Suppose we observe a sample that contains a single observation x and a label
lpxq. The algorithm

pλ “

#

λ1 if (x P λ1 and lpxq “ 1) or (x P λ2 and lpxq “ 0);
λ2 if (x P λ2 and lpxq “ 1) or (x P λ1 and lpxq “ 0).

will achieve zero misclassification error. Hence 1 is satisfied for any M ě 1, using an
algorithm that throws away all the data points but the first one.
29A class with finite VC dimension has finite bracketing numbers, and satisfies uniform laws of
large numbers for every ergodic process (Adams and Nobel, 2012).
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So now we will focus on non-trivial concept classes. We show first that if Λ has
finite VC dimension, then λpSq P Λ is learnable in the sense of 1.

To see this, let PΘ denote the set of all probability distributions over Θ Ď Rp

and let PpRdq denote the set of all probability distributions over Rd (the space in
which λ takes its values). Note that each P P PΘ induces a probability distribution
P̃ over Rd in the obvious way: for any measurable A P 2R

d , P̃ pAq ” P pλ´1pAqq. Let
PλpPΘq denote the set of all probability measures induced by the elements of PΘ

through the mapping λ. Evidently PλpPΘq Ď PpRdq.
The Fundamental Theorem of Statistical Learning in Blumer et al. (1989) Theo-

rem 2.1 part (i) implies that if Λ Ď 2λpΘq Ď 2R
d has finite VC dimension, then there

exists an algorithm pλM such that for any 0 ă ε, δ ă 1 and any λ P Λ :

sup
PPPpRdq

P
´

LppλM ;λ, P q ě ε
¯

ď δ,

provided M ě mpε, δq. Since PλpPΘq Ď PpRdq and λp¨q is injective, it then follows
that:

sup
PPPλpPΘq

P
´

LppλM ;λ, P q ě ε
¯

ď sup
PPPpRdq

P
´

LppλM ;λ, P q ě ε
¯

ď δ,

provided M ě mpε, δq. Thus, λpSq P Λ is learnable in the sense of 1.
Now we show that λpSq P Λ is learnable only if Λ has VC finite dimension.

Suppose to the contrary that Λ Ď 2λpΘq has infinite VC dimension. Then for any
d˚ P N there exist d˚ distinct points tx1, . . . , xd˚u that are shattered by Λ. Since
Λ Ď 2λpΘq, this implies the existence of at least d˚ points θ1, . . . , θd˚ P Θ such that
λpθmq “ xm, m “ 1, . . . , d˚. Since PΘ contains all possible distributions on Θ,
it contains the uniform distribution over tθ1, θ2, . . . , θd˚u which induces a uniform
distribution over tx1, . . . , xd˚u. The proof of part (ii)(b) Case 2 of Theorem 2.1
in Blumer et al. (1989, pp. 936–937) then implies that any learning algorithm should
use at least Opd˚q draws. We assumed that Λ had infinite VC dimension, so this
must hold for any d˚ P N. Therefore, learning is not possible if Λ has an infinite VC
dimension.
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A.3 Proof of Theorem 2

Proof. Suppose that there is an algorithm pλM that satisfies piq and piiq. Take any
concept λ P Λ that is not a band. This means that λ is such that A ” rλszλ ‰ H.
Suppose that we observe an i.i.d. sample of size M , θM “ pθ1, . . . , θM q such that
λpθmq P A for all m “ 1, . . . ,M .

For any such sample, an algorithm that satisfies piq outputs the empty set (this
happens because for every m, we must have λpθmq R λ, and consequently θi cannot
be in S). Thus, a sample with λpθmq P A for all m has only 0-labels and any
algorithm satisfying piq will, at best, misclassify all λpθmq P A. So for any probability
distribution P :

λpθmq P A, @m “ 1, . . . ,M ùñ LppλM ; rλs, P q ě P pλpθq P Aq. (6)

By assumption, for every 0 ă η ă 1 there exists a probability distribution Pη such
that Pηpλpθq P Aq ě η. This means that for every η we have that

Pη

´

LppλM ; rλs, Pηq ě η
¯

ě Pη

´

LppλM ; rλs, Pηq ě Pηpλpθq P Aq
¯

(as Pηpλpθq P Aq ě η),

ě Pηpλpθmq P A, @m “ 1, . . . ,Mq

(by (6)),

ě ηM .

If piiq is satisfied, then there must exist a function mpε, δq – that depends on the
algorithm pλM – such that for anyM ě mpε, δq we have that for any η, PηpLppλM ; rλs,

Pηq ě εq ď δ. However, note that for any η1 ě ε it follows that

Pη1
´

LppλM ; rλs, Pη1q ě η1
¯

ď Pη1
´

LppλM ; rλs, Pη1q ě ε
¯

ď δ.

But then this implies that for any η1 ě ε, we have a fortiori that pη1qM ď δ. Rear-
ranging for M yields, M ě lnpδq{ lnpη1q for any M ě mpε, δq. In particular, if we
let m̄pε, δq denote the smallest integer larger than or equal to mpε, δq we have that
m̄pε, δq ě lnpδq{ lnpη1q for all η1 P pε, 1q. This implies that mpε, δq has to be infinity
for every ε, δ pair as η1 can be arbitrarily close to 1. This contradicts piiq.
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A.4 Proof of Theorem 3

Proof of upper bound

First term: 2pd{εq lnp2d{δq

To prove the first term of the upper bound in 3 we first need a lemma. Define a
d-dimensional hyperrectangle as the Cartesian product of d intervals in the real line;
that is:

r ”
d

ą

j“1

rrj ,prs, (7)

where rj ă rj for j “ 1, . . . , d. For any d-dimensional rectangle r and any A Ď R we
will also define r´jpAq as the subset of Rd generated by replacing the jth interval
rrj , rjs in the hyperrectangle R by the set A. That is:

r´jpAq “ rr1, r1s ˆ ¨ ¨ ¨ rrj´1, rj´1s ˆAˆ rrj`1, rj`1s . . . rrd, rds.

Lemma 1. For any ε P p0, 1q, any probability measure P on Rd, and any d-
dimensional hyperrectangle r in the form of (7) such that P prq ą ε, let

hj ” inft h1 P rrj , rjs | P pr´jprrj , h
1sq ě εqu. (8)

Then P p̊rhj q ď ε, where r̊hj ” r´jprrj , hjqq.

Proof. Fix any k P rrj , rjs. Let rk ” r´jprrj , ksq and r̊k ” r´jprrj , kqq. Note that hj
in (8) is well defined as the set

t h1 P rrj , rjs | P pr´jprrj , h
1sq ě εqu

is nonempty by the assumption P prq ą ε. Note also that

1. r̊k Ă rk (by definition of rk and r̊k).

2. If k ă hj , then P prkq ă ε (by definition of hj).

3. If kn Ò hj , then
Ť8
n“1 r̊kn “ r̊h.

The definition of hj implies that for every strictly increasing sequence kn Ò hj , we
have

P p̊rknq
by 1
ď P prknq

by 2
ď ε.
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By 3 in the list above and continuity from below of probability measures, it follows
that P p̊rhj q “ limnÑ8 P p̊rknq ď ε. A similar proof can be constructed for sets
r̊hj ” r´jpph

1, rjsq where

hj ” supt h1 P rrj , rjs | P pr´jprh
1, rjsq ě εqu.

Remark on Lemma 1: In the proof of the main theorem we will need to construct
rectangles that have probability greater than or equal to ε{2d, but ensure that the
interior has probability strictly less than ε{2d. This lemma establishes such result
without the need to assume absolute continuity of the probability measure. We
can think of constructing these rectangles by slowly increasing the maximum (or
minimum), h, in the jth dimension, until the probability is greater than or equal to
ε{2d. Then, a rectangle that does not contain this endpoint will have probability
less than or equal to ε{2d. Clearly this relies on only the continuity from above of
all probability measures, as opposed to assuming absolute continuity. Note also that
for absolutely continuous probability distributions, our construction gives rectangles
of mass exactly equal to ε{2d.

We can now move onto the proof of the first term of the upper bound 2d{ε lnp2d{δq.

Proof. The target concept is rλpSqs; which we have defined as the smallest hyper-
rectangle containing the set λpSq. In Rd, we define rλpSqs as

rλpSqs “
d

ą

j“1

rrj , rjs,

Let θM “ pθ1, . . . , θM q be a sample of size M drawn from the distribution P , which
need not be absolutely continuous with respect to the Lebesgue measure on Rp. Fix
ε ą 0 and consider a hypothesis rpλM s as the proposed d-dimensional hyperrectangle
generated by the learning algorithm at an arbitrary – albeit fixed – data realization.
Note that

LprpλM s; rλpSqs, P q “ P p1tλpθq P rpλM su ‰ 1tλpθq P rλpSqsuq

“ P
´

λpθq P rpλM s and λpθq R rλpSqs
¯

(9)

` P
´

λpθq R rpλM s and λpθq P rλpSqs
¯

. (10)
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Note that the definition of rpλM s implies that if λpθq P rpλM s then λpθq P rλpSqs as
rpλM s Ď rλpSqs. Therefore the second term in (10) is 0 and:

LprpλM s; rλpSqs, P q “ P pλpθq P rλpSqszrpλM sq. (11)

Our argument to show that our algorithm learns will rely on the construction of
2d d-dimensional ‘special’ hyperrectangles pr1, r2, . . . , r2dq. These hyperrectangles
will be used to bound the misclassification error of our learning algorithm. The
construction is based on 1 and it goes as follows.

Special hyperrectangles: For any odd j in the set t1, 2, . . . , 2du define

hj ” inft h1 P rrj , rjs | P pr´jprrj , h
1sq ě ε{2dqu

and consider the ‘special’ hyperrectangle rj – r´jprrj , hjsq. Note that hj is well-
defined as by assumption P pλpSqq “ 1, which implies P prλpSqsq “ 1.

Likewise, for any even index j in the set t1, 2, . . . , 2du, let:

hj ” supt h1 P rrj , rjs | P pr´jprh
1, rjsq ě ε{2dqu

and let rj – r´jprhj , rjsq.
The constructed hyperrectangles are ‘special’ because of two reasons. First note

that, by construction, the probability of the special hyperrectangles is lower bounded:

P prjq ě ε{2d.

Second, note that:

P

˜

2d
ď

j“1

r̊j

¸

ď

2d
ÿ

j“1

P p̊rjq ď
2d
ÿ

j“1

ε{2d ď ε, (12)

where r̊j ” r´jprrj , hjqq for j odd and r̊j ” r´jpphj , rjsq for j even, and the last
inequality follows from 1, which implies that P p̊rjq ď ε{2d, for all j “ 1, . . . , 2d.

Bound on the misclassification error: Now we use the special hyperrect-
angles to bound the misclassification error. For each j P t1, 2, . . . , 2du consider the
event:

Ej ”
!

pθ1, . . . , θM q | rpλM s X rj ‰ H
)

.
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This event contains the samples in which our algorithm intersects the jth special
hyperrectangle. We claim that:

pθ1, θ2, . . . , θM q P
2d
č

j“1

Ej ùñ rλpSqszrpλM s Ď
2d
ď

j“1

r̊j ,

and, consequently, LppλM ; rλpSqs, P q ď ε. To verify such a claim, take any point
λ P rλpSqszrpλM s. Since rpλM s is a rectangle, we can write it as:

rpλM s “ rpr1,pr1s ˆ ¨ ¨ ¨ ˆ rprd,prds.

Since λ R rpλM s, there must exist a coordinate – denote it λj – such either λj ą prj

or λj ă prj . Without loss of generality, assume that λj ă prj . Since rpλM s intersects
every special rectangle, in particular it intersects r2pj´1q, which implies that λj ď
prj ď h2pj´1q. Consequently, λ P r̊2pj´1q.

From (12) and (11):

pθ1, θ2, . . . , θM q P
2d
č

j“1

Ej ùñ LprpλM s; rλpSqs, P q ď ε. (13)

Learning guarantee: Our goal is now to find the required number of samples
M such that the probability of the event in which LprpλM s; rλpSqs, P q ą ε is less than
δ. We have shown that the event LprpλM s; rλpSqs, P q ą ε implies that

pθ1, θ2, . . . , θM q R
2d
č

j“1

Ej ,

or equivalently, that rpλM s X rj “ H for some j. Therefore, it will suffice to show
that we can find a sample size large enough such that the events Ecj have arbitrarily
small probability. Note that by definition of rpλM s, the event Ej happens if and only
if Dmpjq P t1, 2, . . . ,Mu such that:

λpθmpjqq P rj and θmpjq P S. (14)
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This means that Ecj happens if there is no M such that (14) happens. Note that:

P
´

LprpλM s; rλpSqs, P q ą ε
¯

ď P

˜

pθ1, θ2, . . . , θM q P
2d
ď

j“1

Ecj

¸

(by (13)),

ď

2d
ÿ

j“1

P prpλM s X rj “ Hq

(by Boole’s inequality),

ď

2d
ÿ

j“1

P pE θm s.t. both λpθmq P rj and θm P Sq

(by definition of rpλM s, as explained in (14)),

“

2d
ÿ

j“1

P p@ θm either pλpθmq R rjq or pθm R Sqq

“

2d
ÿ

j“1

P pλpθmq R rj or θm R SqM

(as θm are i.i.d.),

ď

2d
ÿ

j“1

pP pλpθmq R rjq ` P pθm R Sqq
M

(by Boole’s inequality),

“

2d
ÿ

j“1

P pλpθmq R rjq
m

(as P pSq “ 1),

ď 2dp1´ ε{2dqM

(as P prjq ě ε{2d),

ď 2d exp

ˆ

´Mε

2d

˙

(as 1´ x ď expp´xq for all x P Rq.

Thus for any δ ą 0, to ensure P
´

LprpλM s; rλpSqs, P q ą ε
¯

ď δ, we require 2d exp
`

´Mε
2d

˘

ď

δ. Rearranging for M yields M ě 2d
ε ln

`

2d
δ

˘

.
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Second term: expp1qp2d` lnp1{δqq{ε

Proof. The target concept is rλpSqs; which we have defined as the smallest hyper-
rectangle containing the set λpSq. In Rd, we define rλpSqs as

rλpSqs ”
d

ą

j“1

„

inf
θPS

λjpθq , sup
θPS

λjpθq



,

where λjpθq denotes the jth coordinate of λpθq. Note that

LprpλM s; rλpSqs, P q “ P p1tλpθq P rpλM su ‰ 1tλpθq P rλpSqsuq

“ P
´

λpθq P rpλM s and λpθq R rλpSqs
¯

(15)

` P
´

λpθq R rpλM s and λpθq P rλpSqs
¯

. (16)

Note that the definition of rpλM s – and the fact that P has all of its mass on S –
imply that if λpθq P rpλM s then λpθq P rλpSqs. Therefore the second term in (16) is 0

and:
LprpλM s; rλpSqs, P q “ P pλpθq P rλpSqszrpλM sq.

Let θM denote the row vector pθ1, . . . , θM q. For any p ą 0 we can bound the
probability of misclassification error greater than ε:

PM pLprλ̂M s; rλpSqs, P q ą εq “ PM pLprλ̂M s; rλpSqs, P qp ą εpq

ď
1

εp
EP rLprλ̂M s; rλpSqs, P qps

(where the last line follows by Markov’s inequality),

“
1

εp

ż

P pλpθq P rλpSqszrpλM sq
pdPmpθM q

“
1

εp

ż

«

M`p
ź

k“M`1

P pλpθkq P rλpSqszrpλM sq

ff

dPmpθM q

(assuming θk „ P i.i.d, independently from θM ),

Let θp ” pθM`1, . . . , θM`P q, and θM`p ” pθM ,θpq.

“
1

εp

ż

”

P pλpθkq P rλpSqszrpλM s,@k “M ` 1, . . . ,M ` pqdP ppθpq
ı

dPM pθM q

(by independence),
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“
1

εp

ż
„
ż

1tλpθkq P rλpSqszrpλM s,@k “M ` 1, . . . ,M ` pudP ppθpq



dPM pθM q

“
1

εp

ż

1tλpθ˚kq P rλpSqszr
pλM s,@k “ 1, . . . , pudPM`ppθM`pq

(by Fubini’s theorem),

ď
1

εp
sup
θM`p

ż

1tλpθσpkqq P rλpSqszrλ̂M spθσp1q, . . . , θσpMqq,@k “M ` 1, . . . ,M ` pudUpσq

(Haussler et al. (1994) p. 258 Corollary 2.1),

where σ is a permutation of the elements of θM`p, Upσq is the uniform distribution
on these permutations, and – in a slight abuse of notation – we have made explicit the
dependence of rpλM s on the values of the first M elements of the permuted sample,
which we denote as pθσp1q, . . . , θσpMqq.

Define now θσpMq ” tθσp1q, . . . , θσpMqu, and similarly θσppq ” tθσpM`1q, . . . ,

θσpM`pqu to be the sets that contain, respectively, the firstM and the last p elements
of the σ permutation of the row vector θM`p. We can majorize the probability of
a misclassification error greater than ε by the supremum of the probability that p
points are misclassified, with respect to a random permutation, σ, of the M ` p

points, θM`p. Note that the order in the M points used to build rλ̂M spθσpMqq do
not matter, and neither do the p elements, θσppq used to assess misclassification (this
is why we have denoted θσpMq and θσppq as sets and not vectors). Because the or-
der of the elements does not matter, it suffices to consider how many combinations
(i.e. unordered sets) of size M out of the M ` p elements in θM`p we will have that
when given to the algorithm misclassify all the remaining p points.

The total number of combinations of M elements from M ` p is
`

M`p
M

˘

which
equals

`

M`p
p

˘

. Denote by BpθM`pq the collection of all subsets of size M (which
we have chosen to denote as θσpMq) that generate p misclassifications; that is θ R
rpλM spθσpMqq for every θ P θσppq. We will show that |BpθM`pq| ď

`

2d`p´1
p

˘

, and that
this is true for any sample of points θM`p. Thus, continuing our inequality from
above yields

PM pLprλ̂M s; rλpSqs, P q ą εq ď
1

εp

`

2d`p´1
p

˘

`

M`p
p

˘

“
1

εp
p2d` p´ 1q . . . 2d

pm` pq . . . pm` 1q
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ă

ˆ

2d` p

εm

˙p

.

If we choose p “ log 1
δ and m ě

expp1qp2d`pq
ε , then

ˆ

2d` p

εm

˙p

ď

ˆ

1

expp1q

˙rlog 1
δ

s

ď δ,

and thus m “
expp1q
ε

`

2d` log 1
δ

˘

will suffice.
Now let us prove the claim |BpθM`pq| ď

`

2d`p´1
p

˘

. We will do so by constructing
– for an arbitrary sample of M ` p points θM`p that leads to p misclassifications –
an injective map ϕ from BpθM`pq to the set of sequences of 2d nonnegative integers
summing to p. It is known that there are at most

`

2d`p´1
p

˘

possible sequences of
2d nonnegative integers that sum to p.30 If ϕ is injective, this will prove the upper
bound for the cardinality of BpθM`pq. For the rest of the proof, we will write B
without reference to θM`p. We will also use B to make reference to an element of
B, and we will use Bc to denote its complement relative to θM`p that is Bc ” tθ1,

. . . , θM`puzB.
For a given B P B our algorithm for estimating the tightest bands containing S

is:

rpλM spBq “
d

ą

j“1

rprj ,prjs,

where prj “ minm|lpθmq“1 λjpθmq and prj “ maxm|lpθmq“1 λjpθmq. Since P puts proba-
bility one on S, all the elements in a sample have label equal to 1. This means that
the min/max in each dimension are taken over all the elements in B.

If λpθq P rλpSqszrpλM s, there must exist at least one dimension – denote it λjpθq
– such either λjpθq ą prj or λjpθq ă prj . For each element B P B we wish to construct
a partition of the elements in Bc that allocates the misclassification of a point to a
particular dimension, and direction (either min or max).

We will construct this partition in the following way:

C1pBq ” tθm P B
c | λ1pθmq ă pr1u,

C2pBq ” tθm P B
c | λ1pθmq ą pr1u,

30To see this, note that the set of sequences of 2d nonnegative integers summing up to p is the
support of the multinomial distribution with 2d categories and p trials. The total number of support
points is

`

2d`p´1
2d´1

˘

which, by definition, equals
`

2d`p´1
p

˘

.
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C3pBq ” tθm P B
c | λ2pθmq ă pr2uzpC1pBq Y C2pBqq,

C4pBq ” tθm P B
c | λ2pθmq ą pr2uzpC1pBq Y C2pBqq,

...

C2d´1pBq ” tθm P B
c | λdpθmq ă prduz

2d´2
ď

j“1

CjpBq,

C2dpBq ” tθm P B
c | λdpθmq ą prduz

2d´2
ď

j“1

CjpBq.

Suppose j is odd. CjpBq contains all the misclassified p points which can be
‘blamed for being too little’ on dimension pj ` 1q{2 (and have not been blamed
for being too little or too big on a smaller dimension). Cj`1pBq are the points in
dimension pj ` 1q{2 that were too big. From this point onward, we will call j “ 1,

. . . , 2d ‘dimensions’, and w.l.o.g. will focus on odd j.
Note that

Ť2d
j“1CjpBq “ Bc, and that by construction CjpBq are disjoint. Given

that Bc contains p points, this implies
ř2d
j“1 |CjpBq| “ p. Hence t|CjpBq|u2dj“1 is a

sequence of nonnegative integers summing to p.
Therefore we can define our map ϕ as

ϕpBq “ p|C1pBq|, . . . |C2dpBq|q.

It remains to be shown that ϕ is an injective map. By showing that this map is
injective we will be able to bound the cardinality of B by the cardinality of the
image of ϕ. Thus, we need to show that for every B1, B2 P B, ϕpB1q “ ϕpB2q

implies B1 “ B2. We will show the contrapositive B1, B2 P B, B1 ‰ B2 implies
ϕpB1q ‰ ϕpB2q.

Take an arbitrary B1, B2 P B, such that B1 ‰ B2. First we want to show that
R1 ” rpλspB1q ‰ rpλspB2q ” R2, which is to say that the sample of M points B1

generates a different rectangle than the sample B2.
Suppose by contradiction that R1 “ R2. As B1 ‰ B2, there exists θ˚ P B1, such

that θ˚ P Bc
2. Because θ˚ P B1, it is correctly classified by R1, and because R1 “ R2,

it is also correctly classified by R2. So we have θ˚ P Bc
2 and θ˚ is correctly classified by

R2, which contradicts the definition of Bc
2 (which only contains misclassified points).

Now we want to show ϕpB1q ‰ ϕpB2q whenever B1 ‰ B2. As R1 ‰ R2, this
implies there exists a dimension, such the bounds for the rectangles in that dimension
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do not agree. Call the smallest dimension in which this occurs j˚ and suppose w.l.o.g.
that pr1

j˚ ă pr2
j˚ .

There exists θ˚ P B1, such that λj˚pθ˚q “ pr1
j˚ ă pr2

j˚ ď λj˚pθq for all θ P B2.
Because j˚ is the smallest dimension in which the rectangles do not agree, θ˚ R
Cj1pB2q for j1 ă j˚. Take any θm P Bc

1 for which λj˚pθmq ă pr1
j˚ . Since pr1

j˚ ă pr2
j˚ ,

we can conclude that θm cannot be in B2. Therefore tθm P Bc
1 | λj˚pθmq ă pr1

j˚u Ď

tθm P B
c
2 | λj˚pθmq ă pr2

j˚u. Moreover, since θ˚ R Cj1pB2q for j1 ă j˚ the set inclusion
must be strict. Also, because j˚ is the smallest dimension in which R1 and R2 differ,
we must have Cj1pB1q “ Cj1pB2q for all j1 ă j˚.

This implies Cj˚pB1q Ă Cj˚pB2q, and |Cj˚pB1q| ă |Cj˚pB2q|, which in turn
implies ϕpB1q ‰ ϕpB2q.

Proof of lower bound

The proof of the upper bound was for any P P PpSq. In order to construct a lower
bound on the sample complexity we construct a specific probability distribution in
PpSq, and find the required number of draws to learn from the inside.

We will prove separately the two terms in the maximum.
First term: p1 ´ εq{ε lnp1{δq

Proof. By assumption there exists a concept λpSq P Λ that has two different points.
This means that there exists at least two different points in S, denoted θ1 and θ2.
Consider the probability distribution

P pθ1q “ 1´ ε, P pθ2q “ ε.

Note that this probability distribution belongs to PpSq, as P pSq “ 1.
Suppose that we observe a sample of sizeM that contains only the value θ1. The

probability of observing such a sample is

P ppθ1, θ1, . . . , θ1
loooooomoooooon

m times

qq “ p1´ εqM .

On this sample, our algorithm reports the set tλpθ1qu, but misclassifies λpθ2q. Hence
the when we observe this sample, the loss is

LprpλM s; rλpSqs, P q “ P pθ2q “ ε.
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Hence

P
´

LprpλM s; rλpSqs, P q ě ε
¯

ě P
´

LprpλM s; rλpSqs, P q “ ε
¯

“ P ppθ1, θ1, . . . , θ1qq

“ p1´ εqM .

Learning from the inside, implies that P pLprpλM s; rλpSqs, P q ě εq ď δ, and hence
learning from the inside implies that p1´ εqM ď δ. Re-arranging for M yields

M ě
lnp1{δq

´ lnp1´ εq
.

Therefore in order to learn from the inside, we require M ě
lnp1{δq
´ lnp1´εq . In partic-

ular as 1
´ lnp1´εq ě

1´ε
ε for all ε P p0, 1q, learning from the inside with rpλM s implies

that M ě 1´ε
ε ln

`

1
δ

˘

. Thus, the smallest mpε, δq required to learn from the inside
has to be at least 1´ε

ε ln
`

1
δ

˘

.

Second term: 3d
16ε

Assumption 3. For each dimension j P t1, . . . , du define

Lj ” arg min
θPS

λjpθq, U j ” arg max
θPS

λjpθq.

These are the θ’s in S that give the smallest and largest values in each dimension.
Suppose that S is such that there exists a collection of 2d different points

θ˚ “ tθ1, θ1, . . . , θd, θdu,

such that

1. θj P Lj and θj P U j for all j “ 1, . . . , 2d,

2. θj , θj R Lj1 , U j1 for all j1 ‰ j,

3. θj ă θj for all j.

Proof. Fix the set S and the function λ. Define the set λpSq P Rd as we have
previously done.

The construction in 3 implies that each of the 2d points in θ˚ is an extreme point
(minimum or maximum) of λpSq in one and only one dimension. This implies that
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given a sample that contains a subset of these 2d points, B Ă θ˚, our algorithm rpλM s
will misclassify all the points in θ˚zB. Let θ0 be an element of S satisfying θ0 R Lj ,

U j for all j. ??, illustrates our construction in the case in which S Ď R2 (depicted
in blue), λp¨q is the identity, and the rectangle is the smallest band containing S.

Consider the following probability distribution over θ˚ Y θ0,

P ˚pθ0q “ 1´ 8ε, P ˚pθiq “
8ε

2d
, for i “ 1, . . . , 2d.

This distribution is well-defined as all points are inside S and ε ď 1
8 .

Denote θM as a i.i.d. sample of size M from P ˚. Our construction implies that
any sample θM from P ˚ has the property

1tθ R θMu “ 1tλpθq R rpλM su, (17)

since a sample that contains a subset of the 2d points in θ˚ (say B Ă θ˚) will imply
that, for such sample, our algorithm rpλM s will misclassify all the points in θ˚zB.

We will show that for any sample size M ď 3d
16ε , we have

ErLprλ̂M s; rλpSqs, P ˚qs ě 2ε.

We can write the misclassification error as

Lprλ̂M s; rλpSqs, P ˚q “ P ˚pλpθq R rpλM sq

“
ÿ

θPθ0Yθ
˚

P ˚pθq1tλpθq R rpλM su

ě
ÿ

θPθ˚

P ˚pθq1tλpθq R rpλM su

“
ÿ

θPθ˚

P ˚pθq1tθ R θMu,

where we have used the fact that – by construction of P ˚ – any sample θM has the
property in (17). Consequently

ErLprλ̂M s; rλpSqs, P ˚qs ě
ÿ

θPθ˚

P ˚pθqP ˚pθ R θM q.

Note that for any θ P θ˚, the probability that it is not in the sample of size M ,
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θM is

P ˚pθ R θM q “
M
ź

m“1

P ˚pθm ‰ θq

“ P ˚pθm ‰ θqM

“

ˆ

1´
8ε

2d

˙M

.

Therefore,

ErLprλ̂M s; rλpSqs, P ˚qs “
ÿ

θPθ˚

P ˚pθq

ˆ

1´
8ε

2d

˙M

“ 2d
8ε

2d

ˆ

1´
8ε

2d

˙M

ě 8ε

ˆ

1´
M8ε

2d

˙

(by Bernoulli’s inequality),

ě 8ε

ˆ

1´
3

4

˙

(as M ď 3d{16ε),

“ 2ε.

Note that ErLprλ̂M s; rλpSqs, P ˚qs ď
ř

θPθ˚ P
˚pθq “ 8ε. Therefore,

2ε ďE
”

Lprλ̂M s; rλpSqs, P ˚q
ı

ďP
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯

ˆ E
”

Lprλ̂M s; rλpSqs, P ˚q
ˇ

ˇ

ˇ
Lprλ̂M s; rλpSqs, P ˚q ą ε

ı

`

´

1´ P
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯¯

ˆ E
”

Lprλ̂M s; rλpSqs, P ˚q
ˇ

ˇ

ˇ
Lprλ̂M s; rλpSqs, P ˚q ď ε

ı

ďP
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯

8ε

`

´

1´ P
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯¯

ε

ďP
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯

7ε` ε.
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Collecting terms we get

P
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯

ě
1

7ε
p2ε´ εq “

1

7
.

Therefore for ε ď 1
8 and δ ď 1

8 ă
1
7 , we have

P
´

Lprλ̂M s; rλpSqs, P ˚q ą ε
¯

ą δ,

whenever M ď 3d
16ε .

A.5 Proof of Proposition 1

Proof. The tightest band containing λpSq is defined as before:

rλpSqs ”
d

ą

i“1

rri, ris.

Also let rpλM s be defined as,

rpλM s ”
d

ą

i“1

rr̂i, r̂is,

where, by construction of our algorithm, rpλM s is a subset of rλpSqs.
Define a vertex v of rλpSqs to be a point in Rd, where the ith coordinate is either

ri or ri for i “ 1, . . . , d. Define pv to be sample analogue of v (replacing ri and ri by
pri and pri).

The worst-case relative Hausdorff distance between rλpSqs and rpλM s (defined in
(4)) is

d̃HprλpSqs, rpλM sq “
dHprλpSqs, rpλM sq

sup
rpλM sĎrλpSqs

dHprλpSqs, rpλM sq
. (18)
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The numerator can be shown to equal:31

dHprλpSqs, rpλM sq “ sup
i“1,...,d

tr̂i ´ ri, ri ´ r̂iu.

Consequently,

d̃HprλpSqs, rpλM sq “
supi“1,...,dtr̂i ´ ri, ri ´ r̂iu

supi“1,...,dtri ´ riu
.

We would like to show that (18) is bounded above by the misclassification error
between rλpSqs and rpλM s. That means that if the misclassification error is smaller
than ε, then the worst-case Hausdorff distance is also smaller than ε.

The argument goes as follows. First, 1 implies that ri and ri are finite for every
i. Therefore, the worst-case Hausdorff is finite and equals

d̃HprλpSqs, rpλM sq “
supi“1,...,dtr̂i ´ ri ` pri ´ riq, ri ´ r̂i ` pri ´ riqu

supi“1,...,dtri ´ riu

“
supi“1,...,dtpri ´ riq ´ pri ´ r̂iq, pri ´ riq ´ pr̂i ´ riqu

supi“1,...,dtri ´ riu

ď
supi“1,...,dtpri ´ riq ´ pr̂i ´ r̂iqu

supi“1,...,dtri ´ riu

(as r̂i ď ri and r̂i ě ri),

ď sup
i“1,...,d

"

pri ´ riq ´ pr̂i ´ r̂iq

ri ´ ri

*

“ 1´
r̂i˚ ´ r̂i˚

ri˚ ´ ri˚

31Given that vertices are the extreme points in both rλpSqs and rpλM s, we can focus our attention
of the differences between the two sets of vertices. We will now show that the distance between
the two sets of vertices is the difference between the true vertex and its sample analogue. Take a
vertex of rλpSqs, denoted v and w.l.o.g. assume v ” rr1, . . . , rds. Take the sample analogue of that
vertex: v̂ ” rr̂1, . . . , r̂ds and a different vertex pv1 of rpλM s, with at least one different coordinate, in
the j’th dimension v̂1 ” rr̂1, . . . , r̂j , . . . , r̂ds. The claim is that d8pv, v̂q ď d8pv, v̂

1
q. Suppose not.

Then

d8pv, v̂q ą d8pv, v̂
1
q

ðñ maxtr1 ´ r̂1, . . . , rj ´ r̂j , . . . , rd ´ r̂du ą maxtr1 ´ r̂1, . . . , rj ´ r̂j , . . . , rd ´ r̂du.

Clearly this can only be true if the max is obtained over the j’th dimension, which implies rj´ r̂j ą
rj ´ r̂j ùñ r̂j ą r̂j , our desired contradiction.
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(where i˚ is the dimension over which the sup is attained),

“ 1´ P pλi˚pSq P rr̂i˚ , r̂i˚sq

(as λi˚pSq „ Upri˚ , ri˚q for any dimension, by 2),

ď 1´ P

˜

d
č

i“1

λipSq P rr̂i, r̂is

¸

“ P pλ P rλpSqszrpλM sq

(as P pSq “ 1),

“ LprpλM s; rλpSqs, P q.

Thus, we have shown that the worst-case Hausdorff distance is at most the misclas-
sification error.

A.6 Learning smallest bands in the real line when λ con-
tains one element that is not a band

Assume that when there are no positive labels, the reported set does not depend
on the sampled λ’s. Consider three cases.

Case 1: Suppose that we have an algorithm that, absent positive labels, reports
a nonempty set λ1 P Λ that does not intersect r0, 2s. In this case, any probability
measure P that places all of its mass on λ1 will have, with probability 1, misclassi-
fication error of 1 relative to r0, 2s if the true set is r0, 1s Y t2u.

Case 2: Absent positive labels, the algorithm reports a set λ1 such that r0,
2s X λ1 “ r0, 2s, or equivalently r0, 2s Ď λ1. Take any other set λ2 P Λ in the
complement of λ1 to be the true set generating the labels. Consider a probability
measure P that places all of its mass on r0, 2s. Since λ2 is the true set, any sample
will lack positive labels which implies that λ1 will be reported. Thus, with probability
1, misclassification error will be 1, as r0, 2s X λ2 “ H.

Case 3: Suppose that the set λ1 reported by the algorithm is such that r0,
2s X λ1 ‰ r0, 2s and r0, 2s X λ1 ‰ H.

Case 3.1: λ1 “ r0, 1s Y t2u. Take any set λ2 in the complement of r0, 2s to
be the true set and consider a probability measure that puts all of its mass in r0,
1s Y t2u. Any sample from P will lack positive labels, thus λ1 will be reported with
probability 1. Since λ2 was chosen to satisfy λ1 X λ2 “ H, misclassification error is
1 with probability 1.
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Case 3.2: λ1 is an interval ra, bs that intersects r0, 2s. Suppose the true set
is λ2 ” pra, bs Y r0, 2sqzra, bs, which is an interval. Take P to be any probability
distribution that places all of its mass on λ1 “ ra, bs. This means that any sample
will lack positive labels. Since λ1 X λ2 “ H, misclassification error is again 1 with
probability 1.

It would seem that this result holds more generally, as long as the concept class
contains at least 2 sets. The argument would go as follows:

Suppose that absent positive labels, the algorithm reports λ1. Suppose the true
set is λ2, such that λ1 Ę rλ2s, and suppose a measure P that puts mass 1 on λ1zrλ2s.
Because P puts no mass on rλ2s, we will always receive no positive labels, and hence
output λ1. We will misclassify all points in λ1zrλ2s, which occur w.p.1, and hence
we will have a misclassification error of 1 with probability 1.

A.7 Learning with sampling error

Let S be our set of interest, and Ŝn an estimator of it.

Assumption 4.
dHprλpSqs, rλpŜnqsq

p
Ñ 0. (19)

Proof. Define

rλpSqs ” ˆdj“1rr
˚
j , r

˚
j s,

rλpŜnqs ” ˆ
d
j“1rr̂j , r̂js,

rλpŜηnqs ” ˆ
d
j“1rr̂

η
j , r̂

η
j s,

where Ŝηn is an arbitrary subset of Ŝn.
Fix η ą 0, and pick a set Ŝηn for which

inf
j“1,...,d

mint|r̂j ´ r̂
η
j |, |r̂j ´ r̂

η
j |u ě η. (20)

Define PηpŜnq to be the class of probability measures that are supported on a
set Ŝηn selected above.

Pick pε, δq, and let M ” mpε, δq denote the number of draws recommended by 3.
Suppose that the estimator Ŝn satisfies

dHprλpSqs, rλpŜnqsq ă η{2
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(which we know happens with high probability for n sufficiently large). The misclas-
sification error between rλ̂M s and rλpSqs is

Lprλ̂M s; rλpSqs, P ˚q “ P ˚pλpθq P rλ̂M s, λpθq R rλpSqsq ` P
˚pλpθq R rλ̂M s, λpθq P rλpSqsq.

(21)
Take any P ˚ P PηpŜnq. Note that the second term in (21) equal to

P ˚pλpθq R rλ̂M s, λpθq P rλpSqs, λpθq P rλpŜ
η
nqsq,

as P ˚ is supported on Ŝηn, so any draw from P ˚ belongs to rλpŜηnqs. This term is no
greater than

P ˚pλpθq R rλ̂M s, λpθq P rλpŜ
η
nqsq “ Lprλ̂M s; rλpŜηnqs, P ˚q ă ε,

with probability 1´ δ by 3.
For any P ˚ P PηpŜnq, the first term in (21) is

P ˚pλpθq P rλ̂M˚s,λpθq R rλpSqs, λpθq P rλpŜηnqsq ď P ˚pλpθq R rλpSqs, λpθq P rλpŜηnqsq.

Consider the event tλpθq R rλpSqsuYtλpθq P rλpŜηnqsu. λpθq R rλpSqs implies that
λjpθq R rr

˚
j , r

˚
j s for some dimension j. Suppose w.l.o.g. that λjpθq ă r˚j . Since

dHprλpŜnqs, rλpSqsq ă η{2, (22)

which is justified by (19). By (22), we have

λpθq ă r˚j ă r̂j ` η{2 ă r̂j ` η.

By (20), we have that r̂j ` η ă r̂ηj . Finally, given that our draws come from P ˚,
we must have r̂ηj ď λpθq. Combining these inequalities, yields λpθq ă λpθq, which
occurs with probability zero. Hence the first term in (21) is equal to 0.

Therefore, for any estimator pSn that satisfies (22), we have

P ˚pLprλ̂M s; rλpSqs, P ˚q ă εq ě 1´ δ.
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B Appendix B

See Online Supplementary Material.
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