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Abstract

We study the Latent Dirichlet Allocation model, a popular Bayesian algo-

rithm for text analysis. Our starting point is the generic lack of identification

of the model’s parameters, which suggests that the choice of prior matters.

We then characterize by how much the posterior mean of a given functional

of the model’s parameters varies in response to a change in the prior, and we

suggest two algorithms to approximate this range. Both of our algorithms rely

on obtaining multiple Nonnegative Matrix Factorizations of either the poste-

rior draws of the corpus’ population term-document frequency matrix or of

its sample analogue. The key idea is to maximize/minimize the functional

of interest over all these nonnegative matrix factorizations. To illustrate the

applicability of our results, we revisit recent work on the effects of increased

transparency on discussions regarding monetary policy decisions in the United

States. Keywords: Text Analysis, Machine Learning, Nonnegative Matrix

Factorization, Robust Bayes, Set-Identified Models.
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1 Introduction

Text is an increasingly popular input in empirical economics research.1 Text

from financial news correlates with stock market activity (Tetlock, 2007). Text from

media outlets is a key input to study media slant (Gentzkow and Shapiro, 2010).

Narrative records on macroeconomic policy—such as the transcripts of the Federal

Open Market Committee (FOMC) or congressional reports on tax bills—have been

helpful to assess the impacts of policy decisions on the macroeconomy (Romer and

Romer, 2004, 2010).

In this paper we study the Latent Dirichlet Allocation (LDA) of Blei, Ng and

Jordan (2003), a popular off-the-shelf machine learning tool for the analysis of text

data. The model has achieved significant success in computer science and other

disciplines, and has found some recent applications in economics.2 The model’s key

assumption is that the probability of a term appearing in a particular document is

a finite mixture of K latent topics. A topic is modeled as a probability distribution

over V terms in a given vocabulary. Each document is characterized by the share it

assigns to each topic.

The analysis of the model is typically Bayesian and the goal of this paper is

to understand—theoretically and algorithmically—the extent to which the LDA

output is determined by the choice of prior. This concern is part of the classical

work on Robust Bayes analysis of Wasserman (1989), Berger (1990) and the more

recent paper of Giacomini and Kitagawa (2020). We think the question we ask is

important as ready-to-use packaged algorithms for implementing LDA make specific

choices on the model’s priors.3

1See Gentzkow, Kelly and Taddy (2019) for an excellent overview.
2Hansen, McMahon and Prat (2018) use the model to study the effects of transparency on

central bank communication using FOMC transcripts from the Greenspan era. Bandiera et al.
(2020) study CEO behavior and firm performance shadowing around 1, 000 CEO’s diaries. A non-
exhaustive list of other applications include Budak et al. (2016) (third part advertising), Mueller
and Rauh (2018) (political violence), Bhattacharya (2018) (procurement contests), and Munro and
Ng (2020) (analysis of categorical survey responses). Ke, Kelly and Xiu (2019) use the likelihood
of the LDA as a building block in a model to predict equity returns using text data.

3The default priors on these parameters are i.i.d. Dirichlet distributions, although there are
plenty of other suggestions in the literature. See Teh et al. (2006), Blei and Lafferty (2007),
Williamson et al. (2010), Zhou (2014) and Zhou, Cong and Chen (2015) for examples.
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Our first result (Theorem 1) shows that the parameters of the model are not

identified, even beyond obvious topic permutations. This means there exist different

observationally equivalent parameter values, that are not related to one another via

topic permutations. This lack of identification is generic in the sense that most

points in the parameter space have observationally equivalent counterparts. Our

first result suggests that the choice of prior indeed matters (even in large samples);

see for example, Poirier (1998); Gustafson (2009); Moon and Schorfheide (2012).4

Our second result (Theorem 2)—which is a direct application of the recent work

of Giacomini and Kitagawa (2020)—characterizes, for any finite sample, the upper

and lower values that the posterior mean of a given (continuous) functional λ can

achieve over a particular class of priors. More concretely, we consider all priors on

the model’s structural parameters that are consistent with some fixed distribution

over the population term-document probabilities.

Our theorem suggests two algorithms to conduct robust text analysis. Both

of these algorithms rely on obtaining multiple Nonnegative Matrix Factorization

(NMF) of either the posterior draws of the population term-document frequency

matrix (Algorithm 1) or its sample analogue (Algorithm 2). In a nutshell, NMF

(Paatero and Tapper, 1994; Lee and Seung, 2001) is a tool for matrix factorization

and rank reduction, similar to the Singular Value Decomposition, but with positivity

constraints.5 The use of NMF for text analysis has been suggested before by Arora,

Ge and Moitra (2012), and their algorithm finds one specific solution of the NMF

problem.6 Our algorithms, which search over all possible solutions of the NMF

problem, and the connection between robust Bayes analysis and NMF are both

novel.
4The relation between identification and prior robustness follows the usual argument. If the

parameters in the likelihood are identified and the sample is large, the prior is unlikely to have
important effects in the Bayesian model’s output. However, if either of the premises fails, the
output of a Bayesian model will typically be sensitive to the choice of prior.

5The NMF approximates a positive matrix P P RVˆD
` as the product of two positive matrices

BΘ, B P RVˆK
` and Θ P RKˆD

` . The quality of the approximation is assessed using different
versions of loss functions; for example I-divergence or Frobenius norm.

6The algorithm is typically justified by the existence of anchor words and topics. See the
discussion at the end of Section 3 and in Appendix A.2.
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Overview of the algorithms: Let Pj denote a posterior draw of the popu-

lation term-document probabilities. Algorithm 1 minimizes/maximizes the function

of interest, λ, over all possible (column stochastic) nonnegative matrix factoriza-

tions of Pj. The optimization of λ is solved by stochastic grid search over the set of

solutions to the NMF of Pj, by repeatedly solving the NMF problem for different

stochastic starting values.7 This algorithm is valid regardless of the data config-

uration (number of words, topics, documents), but is computationally costly as it

requires to extract NMFs, and optimize λ, for each posterior draw.

Algorithm 2 tries to alleviate the computational burden by optimizing λ only

over the nonnegative matrix factorizations of the sample term-document frequency

matrix pP—which we define as the V ˆD matrix where the pt, dq entry reports how

frequent term t is in document d, relative to the number of words in document d.

This second algorithm is computationally less demanding but its justification is more

complicated. In finite samples, the algorithm simply reports the range of the function

λ over all possible Maximum Likelihood estimators of the model’s parameters. In

large samples, it approximates the range of posterior means with high probability,

but only under a sequence where V and D are fixed and the number of words per

document grow large (Theorem 3).

To illustrate the applicability of our algorithms, we revisit Hansen, McMahon

and Prat (2018)’s (henceforth, HMP) work on the effects of increased ‘transparency’

on the ‘conformity’ of members of Federal Open Market Committee and show how

to implement our robust algorithms for text analysis.

The rest of the paper is organized as follows. Section 2 presents the LDA model.

Section 3 shows that the model’s parameters are not identified, even beyond topic

permutations. Section 4 characterizes the range of posterior means of a continuous

functional λ. Section 5 describes the algorithms for text analysis. Section 6 uses the

empirical application of HMP as an illustrative example of our approach. Section 7

concludes. Technical derivations and proofs are collected in the Appendix.
7This procedure is tantamount to ‘(machine) learning’ the range of values of the functional λ

via random sampling as in Montiel Olea and Nesbit (2020).
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Notation: Let ∆K be theK-dimensional simplex: ∆K ” tx P RK`1
` :

řK`1
k“1 xk “

1u. For any vector X, Xk denotes its k-th coordinate. For any matrix Z, Zi,j denotes

its pi, jqth entry. For conformable matrices X and Y , pXY qi,j “ Zi,j, Z “ XY .

2 Statistical Model

This section presents the basic building blocks of the Latent Dirichlet Allocation

model of Blei, Ng and Jordan (2003). The starting point is a collection of D doc-

uments indexed by an integer d P t1, . . . , Du. Each document contains Nd words.

Each word, wd,n, can be one of V terms in a user-selected vocabulary.8 The collec-

tion of documents (the corpus) is denoted by C. The total number of words in the

corpus is N “
řD
d“1Nd.

The LDA model assumes there are K latent ‘topics’. Each topic k P t1, ¨ ¨ ¨ , Ku

is defined as a distribution over the V terms in the vocabulary, βk P ∆V´1. In

addition, the model posits that each document d is characterized by a document-

specific distribution over the K topics, θd P ∆K´1. The topics B “ pβ1, . . . , βkq and

the topic compositions θd determine the ‘mixture’ model for each word in document

d. In particular, the model assumes that each word wd,n in document d is generated

as follows

1. Choose one of K topics: zd,n „ CategoricalpK, θdq.9

2. Choose one of V terms from topic zd,n: wd,n „ CategoricalpV, βzd,nq.

Accordingly, if we let Pdpt|B, θdq denote the probability that a term t P t1, . . . , V u

appears in document d, the model yields:

Pdpt|B, θdq “
K
ÿ

k“1

βt,kθk,d.

8Defining what V terms constitute a vocabulary requires a significant amount of ‘preprocessing’.
There are different possible steps one can take in this stage, but it usually involves normalization
and noise removal; see Gentzkow, Kelly and Taddy (2019) Section 2.

9In the original formulation of Blei, Ng and Jordan (2003), zd,n is defined as a draw from a
Multinomial distribution with parameter θd. The number of trials for the Multinomial is implicitly
assumed to be equal to 1. This means that zd,n is a vector whose entries are either 0 or 1 and has
unit norm. Our formulation is equivalent, but we represent zd,n as an integer in t1, . . . ,Ku.
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Let Θ “ pθ1, . . . , θdq be the topic distributions. The likelihood of corpus C is thus

parameterized by pB,Θq and given by

PpC|B,Θq “
D
ź

d“1

V
ź

t“1

pPdpt|B,Θqqnt,d

“

D
ź

d“1

V
ź

t“1

pBΘq
nt,d

t,d , (1)

where nt,d is count of the number of times term t appears in document d. We can

collect the terms Pdptq in the V ˆD matrix P and use (1) to write

P “ BΘ. (2)

Thus, the population frequency of words in a document (represented by the columns

of P ) is restricted by the model to belong to a K-dimensional subset of the pV ´ 1q-

simplex.10

Before turning to the discussion on identification, we briefly describe the two

popular approaches to conduct inference using the likelihood above. The first one is

the Collapsed Gibbs sampler of Griffiths and Steyvers (2004). The sampler assumes

that the parameters θd, βk have independent Dirichlet priors with scalar parameter

α and η. The hyperparameters for the priors are typically chosen heuristically and

there is some work suggesting that the choice of prior matters (Wallach, Mimno and

McCallum, 2009).

The second approach is the Variational Inference algorithm of Hoffman, Bach

and Blei (2010). The approach is, at its core, Bayesian and uses the same priors

as Griffiths and Steyvers (2004). However, instead of relying on a MCMC routine,

the Variational Inference approach solves an optimization problem to find the best

approximation to the true posterior within some class; see Blei, Kucukelbir and

McAuliffe (2017) for a comprehensive review on this subject.
10Columns of P are probability distributions over V terms, hence are members of the V ´ 1

simplex. Equation (2) implies each column of P can be written as a convex combination of the
columns of a matrix B, each of which lives in the V ´ 1 simplex.
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3 Identification

Let Sa,b denote the set of aˆ b column stochastic matrices; that is, matrices such

that each of their columns is a probability distribution.11 Let ΓK “ SV,K ˆ SK,D

denote the parameter space for (B,Θ).

We say that the parameters of the likelihood in (1) are identified if there exist

no pairs pB,Θq and pB1,Θ1q in ΓK that are observationally equivalent ; that is,

pB,Θq ‰ pB1,Θ1
q ùñ Pp¨|B,Θq ‰ Pp¨|B1,Θ1

q.

This is the standard definition of identification for parametric models in a finite

sample, see Ferguson (1967) p. 144. The requirement is that there cannot be two

different elements in the parameter space that induce that same distribution over

the data.

Theorem 1. Let 1 ă K ď mintV,Du. The parameters of the likelihood in eq. (1),

are not identified, even beyond topic permutations. That is, there exist parameter

values pB,Θq ‰ pB1,Θ1q, not related to one another via column permutations of B

and row permutations of Θ, for which Pp¨|B,Θq “ Pp¨|B1,Θ1q.

Proof. See Appendix A.1.

We explain the logic behind our fairly simple—albeit important—observation.

The likelihood in (1) depends only on the product BΘ, which represents the prob-

ability of each term appearing in each document. Thus, all we need to show is the

existence of observationally equivalent parameters pB,Θq ‰ pB1,Θ1q, not related to

one another via label switching of the topics. This means we are looking for pairs

of parameters for which

BΘ “ B1Θ1.

The proof Theorem 1 shows that—absent further restrictions on the parameter
11See p.253 of Doeblin and Cohn (1993) for a definition.
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space—such pairs of parameter values always exist. In fact, the proof shows that

any parameter pB,Θq such that B has i) all elements different from zero and ii) K

linearly independent columns will have observationally equivalent counterparts that

cannot be obtained via a re-labeling of the topics.

For the sake of exposition, we illustrate this point with an extremely basic ex-

ample where the numbers of terms and topics is two (V “ K “ 2) and the number

of documents D arbitrary.

Figure 1 plots the vectors Pdptq, which represent the probabilities that a term

t appears in document d. Since there are two terms, the document-specific term

probabilities (represented by the black circles) can be placed on the 1-simplex (dotted

line). According to the model, each of these term-document probabilities is a convex

combination—with weights given by θd—of the topic distributions B “ pβ1, β2q (blue

circles). As long as both columns of B have all of its elements different from zero

(so that the columns of B belong to the interior of the simplex) and are linearly

independent they can changed to be anywhere on the thick red line to obtain the

same vectors Pdptq.12

One potential complaint about this example is that it fails to satisfy the simple

and intuitive order condition for identification of structural parameters defined by

a system of equations: the number of unknown parameters pV ˆKq ` pK ˆDq “

2p2 ` Dq is larger than the number of equations V ˆ D “ 2D, for any number

of documents. Figure 2 presents a similar example as the figure above, but now

V “ 3 ą K “ 2. The number of unknown parameters is 2p3 `Dq and the number

of equations is 3D. If D ě 6, the number of equations is larger than the number

of parameters. Yet, the parameters remain only set-identified as the figure below

illustrates.
12In our example having one document that places probability 1 to term 1 (in the picture, this

will correspond to β2 “ p1, 0q), does not pin down β1, even excluding permutations. More generally,
one sufficient condition for uniqueness of solutions to the equation P “ BΘ (up to permutations)
is for P to contain K different columns that appear in K different faces of the V ´ 1 simplex; see
Lemma 4 in Gillis (2012). Thinking about how to verify these conditions about the population
parameters is not always easy, but the algorithm that we will suggest in this paper will work
regardless. If the model is identified, our algorithm will return a very tight range of posterior
means (not necessarily a point because of sampling uncertainty).
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(0,1)

(1,0)

pPdp1q,Pdp2qq1

∆1

β1

β2

Figure 1: Lack of identification when K “ V “ 2 and D is large. The small black
circles are the document specific term probabilities. The dotted line is the 1 simplex.
The large blue circles are one of the possible topic distributions B. The solid red
line is the set of all possible topic distributions.

(0,0,1)

(1,0,0)

(0,1,0)

pPdp1q,Pdp2q,Pdp3qq1

β1

β2

Figure 2: Lack of identification when K “ 2, V “ 3 and D is large. The small black
circles are the document specific term probabilities—the columns of P . The dotted
line is the 2 simplex. The large blue circles are one of the possible topic distributions
B. The solid red line is the set of all possible topic distributions.

To translate the intuitive arguments in the figures above to a formal proof, we

show that the question of how many matrices pB,Θq exist such that BΘ equals some
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column stochastic matrix P is equivalent to inquiring about the uniqueness of the

exact nonnegative matrix factorization (NMF) of P . We use the results in Laurberg

et al. (2008) to argue that—without further restrictions on the parameter space—we

can always find different pairs of column stochastic matrices pB,Θq, pB1,Θ1q such

that BΘ “ B1Θ1, where the matrices are not related to one another by a permutation

operation.

A common reaction to the content of Theorem 1 is that in lieu of the global

definition of identification, it could have been more fruitful to focus on whether or

not a particular point in the parameter space is identified. Following the classi-

cal definition of Rothenberg (1971) (see p. 578), we say that a point pB0,Θ0q in

the parameter space is identified if there are no other parameter values that are

observationally equivalent.

As explained above, the constructive argument in the proof of Theorem 1 already

shows that any parameter pB0,Θ0q for which B0 has i) all elements different from

zero and has ii) K linearly independent columns is not identified, even beyond

topic permutations. Unfortunately, these type of parameters make up for most of

the parameter space. In fact, under the typical Dirichlet priors, the probability

of obtaining a draw satisfying i) and ii) is one. This suggests that the lack of

identification in the model is generic.

This means that while it is certainly possible to obtain identification at a point,

such point must be uncommon. One typical way of achieving identification at a

point is to posit the existence of anchor words ; in the spirit of Arora, Ge and Moitra

(2012); Arora et al. (2016). In a slight abuse of terminology, say that a term t is an

anchor word for topic k if βt,k ‰ 0, but βt,k1 “ 0 for any k ‰ k1. That is, the term

t receives non-zero probability only under topic k. Proposition 1 in Appendix A.2

shows that if the parameter pB0,Θ0q is such that a) each topic k contains at least

one anchor word and b) each topic k has a document dk that loads fully on that

topic (i.e., θdk,k “ 1q, then pB0,Θ0q is indeed identified, up to topic permutations.

The proof of this result follows directly from Theorem 5 in Laurberg et al. (2008).
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The existence of anchor words/topics are difficult to justify in our illustrative

example. In particular, it is quite hard to make a case for the existence of an-

chor documents. It seems implausible to posit the existence of meetings that focus

exclusively on discussing an ‘inflation’ topic or an ‘output’ topic.

4 Prior Robust Bayesian Analysis

Gustafson (2009) and Giacomini and Kitagawa (2020), among others, have shown

that in models where parameters are not identified, standard Bayesian analysis is

sensitive to the choice of prior. The argument is, in a nutshell, that the lack of

identification implies the likelihood function has flat regions, where the posterior

is completely determined by the prior. This section characterizes the sensitivity

of posterior mean estimates of real-valued functions λpB,Θq over a special class of

priors. We assume throughout that the function of interest is invariant to topic

permutations.

Whilst pB,Θq are not identified, their product P ” BΘ is. Hence, the data is

informative about the reduced-form parameter P . With this in mind, we first fix a

prior πP on the reduced-form parameter. We then consider the class of priors over

the structural parameters pB,Θq that induce the distribution πP over the space in

which P lives. Thus, the class of priors under consideration is

ΠB,ΘpπP q ”
 

πB,Θ | πB,ΘpBΘ P Sq “ πP pP P Sq, for any measurable S Ď SKV,D
(

,

where SKV,D collects the elements of SV,D with rank at most K.

Any prior π in this class generates a posterior over λ “ λpB,Θq in the usual way.

Denote the posterior mean of λ based on the prior π as EπrλpB,Θq|Cs. The results

in Giacomini and Kitagawa (2020) immediately allow us to describe the range of

the posterior means for the functional λ as the prior πB,Θ varies over ΠB,ΘpπP q.

Theorem 2. Suppose that λp¨q is continuous. If πP is a proper prior on SKV,D
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(absolutely continuous with respect to a σ-finite measure on this space), then:

inf
πPΠB,Θpπpq

EπrλpB,Θq|Cs “ Eπprλ˚pP q|Cs,

and

sup
πPΠB,Θpπpq

EπrλpB,Θq|Cs “ Eπprλ
˚
pP q|Cs,

where

λ˚pP q ” min
B,ΘPΓK

λpB,Θq s.t. BΘ “ P (3)

and

λ
˚
pP q ” max

B,ΘPΓK

λpB,Θq s.t. BΘ “ P. (4)

Proof. The proof follows directly from Theorem 2 in Giacomini and Kitagawa (2020).

See Appendix A.3 for details.

Theorem 2 characterizes the smallest and largest values of the posterior mean

of λ over the class of priors ΠB,ΘpπP q. The result shows that, mechanically, the

range of posterior means can be obtained as follows. For each posterior draw of

the term-document population frequencies—which we have denoted as P—one min-

imizes/maximizes the function of interest, λ, over all non-negative matrix factoriza-

tions of the posterior draw of P . This means that we search for all parameter values

pB,Θq in the parameter space for which BΘ “ P and we evaluate the range of λ

over this set. Averaging the lower/upper ends over the posterior draws of P gives

the range of posterior means. Importantly, the result applies to any vocabulary size

(V ), number of documents (D), and topics (K); and there is no need to speculate

on whether identification improves when D is large or not. The range of posterior

means could be large or small, depending on the data.

Of course, if there were a unique pair pB,Θq associated to each draw of P (which

would happen if the parameters of the model were identified up to permutations),
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then the range of posterior means would be a singleton. In the next section we

give a more concrete description of the algorithm suggested by Theorem 2 and we

also suggest a computationally less expensive algorithm to approximate the range

of posterior means that is applicable to models in which the number of words per

document is quite large.

5 Robust Bayes Algorithms for Text Analysis

This section presents two robust, parallelizable algorithms for the LDA model.

The first algorithm follows immediately from the theoretical derivations in The-

orem 2 and reports the posterior means of (3) and (4). This algorithm is valid

regardless of the data configuration (number of words, topics, documents). The al-

gorithm is computationally costly; for each posterior draw of P we need to optimize

the function of interest, λ, over all possible nonnegative matrix factorizations of P .

The second algorithm tries to alleviate the computational burden by computing

the nonnegative matrix factorization of only the sample term-document frequency

matrix—which we define as the V ˆ D matrix pP with entries pPt,d ” nt,d{Nd. Al-

though this second algorithm is computationally less demanding, it can only be

justified asymptotically. In particular, we show that it approximates the range of

posterior means with high probability under a sequence where V and D are fixed,

but the number of words per document grow large.

Before presenting the pseudo-code for the algorithms we present a convenient

definition of nonnegative matrix factorization as a mathematical program, we discuss

how to solve the program to obtain one such factorization, and then we explain how

to optimize the function of interest, λ, over all the possible factorizations.

5.1 Nonnegative Matrix Factorization (NMF)

We use the definition of nonnegative matrix factorization given by Paatero and

Tapper (1994), and Lee and Seung (2001) as a solution to a minimization problem.
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This definition is also convenient because it can be used whether we talk about exact

or approximate nonnegative matrix factorization, as we explain below.

Definition 1 (Nonnegative Matrix Factorization). Let P be a non-negative matrix

with rank at least K, not necessarily column stochastic.13 A (rank K) Nonnegative

Matrix Factorization of P (with weights Wt,d ą 0) is a pair of non-negative matrices

pB,Θq that solve the optimization problem:

min
BPRVˆK

` ,ΘPRKˆD
`

D
ÿ

d“1

V
ÿ

t“1

Wt,d

„

Pt,d log

ˆ

Pt,d
pBΘqt,d

˙

´ Pt,d ` pBΘqt,d



. (5)

In a nutshell, the nonnegative matrix factorization of a matrix P consists of finding

nonnegative factors pB,Θq such that the product BΘ is close to P . In the defi-

nition above, closeness between BΘ and P is measured using a so-called weighted

I-divergence criterion, but another popular notion of closeness used in the literature

is the Frobenius norm (Gillis, 2014).14 When there are factors pB,Θq such that

BΘ “ P we say that pB,Θq is an exact NMF of P , in which case the value of the

program in (5) is zero. If there are no factors such that BΘ “ P , but pB,Θq solves

(5) we say that pB,Θq is an approximate NMF of P .

It is well-known that the nonnegative matrix factors of a matrix are not unique,

even up to permutations and scaling (Donoho and Stodden, 2004). For the purposes

of this paper, we are only interested in nonnegative matrix factorizations of P that

are column stochastic.15 We denote such factorizations as:

NMFpP ;Wt,dq. (6)
13A nonnegative matrix X is a matrix with all non-negative entries, xi,j ě 0 for all i and j.
14The I-divergence, also known as generalized Kullback-Leibler divergence, between two matrices

is defined as

KLW pA||Bq “
ÿ

i

ÿ

j

Wi,j

„

Ai,j log

ˆ

Ai,j

Bi,j

˙

´Ai,j `Bi,j



,

see Lee and Seung (2001). Typically KLW pA||Bq is presented with weights Wi,j “ 1. When
Wt,d “ 1 and P˚ and pB,Θq are all column stochastic matrices, I-divergence becomes the Kullback-
Leibler divergence criterion.

15In Appendix A.5 we show that if pP is a column stochastic matrix, then it is always possible
to find column stochastic non-negative factors of pP ; so that the set in eq. (6) is non-empty.
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We extend the definitions (3)-(4) by defining, for every V ˆD matrix P of rank at

least K, the smallest and largest values of λ over the solutions of the program in

(5):

λ˚pP q ” min
B,ΘPΓK

λpB,Θq s.t. pB,Θq P NMFpP ;Wt,dq, (7)

and

λ
˚
pP q ” max

B,ΘPΓK

λpB,Θq s.t. pB,Θq P NMFpP ;Wt,dq. (8)

For any P of rank K that has an exact NMF factorization, the definitions above

coincide with (3)-(4).

5.2 Finding a NMF

Blondel, Ho and van Dooren (2008) Theorem 5 shows that the weighted I-

divergence used to define NMF is non-increasing under the updating rules

Θ Ð
rΘs

rB1W s
˝

ˆ

B1
rW ˝ P s

rBΘs

˙

, B Ð
rBs

rWΘ1s
˝

ˆ

rW ˝ P s

rBΘs
Θ1

˙

,

where X ˝ Y is the Hadamard product (element-wise multiplication) of matrices X

and Y , rXs
rY s

is the Hadamard division of matrices X and Y . The V ˆD matrix W

collects the weights Wt,d.

Therefore if we initialize the algorithm with a random starting matrices Bp0q and

Θp0q, and apply the updating rules, we will converge to a stationary point of the

NMF problem. Pseudo-code for an algorithm to compute a single solution to the

NMF problem is presented in Appendix A.6.

15



5.3 Computing the Range of Functionals of the NMF

To obtain a NMF of matrix P we need column stochastic matrices Bp0q and

Θp0q that serve as initial conditions and the updating rules above. We suggest

approximating the range

”

λ˚pP q, λ
˚
pP q

ı

(9)

by using a stochastic grid of dimensionM over the nonnegative matrix factorizations

of P .

The framework of Montiel Olea and Nesbit (2020) can help us guide our choice

for the size of the random grid. Mathematically, start with the image of the set

S ” tpB,Θq P ΓK | pB,Θq P NMFpP,Wt,dqu, (10)

under the function λ. Thus, the set of interest in (9) can be viewed as the smallest

‘band’ containing the set λpSq. The suggestion of Montiel Olea and Nesbit (2020),

based on statistical learning theory, is to take M random draws pBm,Θmq from the

set S (according to some distribution G) and approximate (9) by

„

min
mPt1,...,Mu

λpBm,Θmq, max
mPt1,...,Mu

λpBm,Θmq



.

The difference between the true set and its approximation can be theoretically

judged using the misclassification error criterion (how often a randomly drawn value

of λpB,Θq according to G will be in one set but not in the other). Montiel Olea and

Nesbit (2020) show that the probability that an approximation has a misclassifica-

tion error of at most ε is at least 1 ´ δ by setting M “ p2{εq logp2{δq. This result

holds uniformly over all possible probability distributions that place probability one

on the true set. Thus, one can achieve an approximation with misclassification error

of at most 6% with probability at least 94% (ε “ δ “ 0.06), by taking M “ 120.
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5.4 Algorithms

We can now present the two algorithms discussed at the beginning of the section.

We first describe the algorithm that computes the smallest and largest posterior

mean of the function λ as we vary the priors over pB,Θq over the class ΠB,Θpπpq.

This algorithm is justified by Theorem 2.

Algorithm 1 Computing inf { supπPΠB,Θpπpq
EπrλpB,Θq|Cs

1. Generate J posterior draws of pB,Θq and compute Pj ” BjΘj for each draw.

2. For each draw Pj compute λ˚pPjq and λ
˚
pPjq as defined in (7)-(8).

3. Report
1

J

J
ÿ

j“1

λ˚pPjq,
1

J

J
ÿ

j“1

λ
˚
pPjq.

As explained before, the evaluation of λ˚ and λ˚ is computationally costly.16 The

following algorithm suggests an approximation to the range of posterior means that

evaluates these functions only once.

Algorithm 2 Approximating inf { supπPΠB,Θpπpq
EπrλpB,Θq|Cs

1. Let pP denote the sample term-document frequency matrix, where pPt,d “
nt,d{Nd.

2. Compute λ˚p pP q and λ˚p pP q as defined in (7)-(8).

3. Report
rλ˚p pP q, λ

˚
p pP qs.

Algorithm 2 is justified by Theorem 3 below. In what follows, let the rank K

matrix P0 denote the true value of the population.

Theorem 3. Assume that λp¨q is continuous and fix V,K, and D. Let the number

of words in document d, Nd, go to infinity for each document in the corpus. Sup-

pose that πP satisfies the assumptions of Theorem 2 and that it leads to a (weakly)
16The suggested computation of these functions is explained in Section 5.3. Also, as we explain

in our illustrative example of Section 6, the draws from pB,Θq can be obtained using Variational
Inference methods.
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consistent posterior in the sense of Ghosal et al. (1995).17

Suppose, in addition, that P0 has a rank K exact NMF—there exists pB0,Θ0q P

ΓK such that B0Θ0 “ P0—and that there exists a small enough neighbourhood V ˚0 ,

such that any P P V ˚0 also has a rank K exact NMF. Then the Hausdorff distance18

between the range of posterior means

«

inf
πPΠB,Θpπpq

EπrλpB,Θq|Cs, sup
πPΠB,Θpπpq

EπrλpB,Θq|Cs

ff

and
”

λ˚p pP q, λ
˚
p pP q

ı

converges in probability to 0, provided the nonnegative matrix factorizations of the

term-document frequency matrix pP uses weights Wt,d “ Nd for every t.

Proof. See Appendix A.4.

Theorem 3 shows that as the number of words per document gets large, we can

approximate the smallest and largest posterior mean of λpB,Θq over the class of

priors ΠB,Θ by the smallest and largest values that λpB,Θq attains over the (col-

umn stochastic) non-negative matrix factorizations of the term-document frequency

matrix pP .19 From a frequentist perspective, the bounds of the set rλ˚p pP q, λ˚p pP qs

can be thought of as natural plug-in estimators of the bounds of the smallest inter-

val containing the identified set for the function λpB,Θq at P0. The argument goes

as follows. Under our assumptions, we can show that the functions λ˚p¨q, λ˚p¨q are

continuous. Thus, since pP
p
Ñ P0, Theorem 3 immediately shows that the range of

17That is for any neighborhood V0 of P0:

πP pP R V0|Cq
p
Ñ 0.

The neighborhood P0 only considers the space of matrices with rank at most K and the neighbor-
hood is defined in terms of spectral norm, i.e. V0 “ tP is of rank at most K| ||P ´ P0|| ă εu for
some small ε, where ||A|| “

?
max eigenvalue of A1A.

18The Hausdorff distance between two intervals ra, bs and rc, ds are given by maxt|a´ c|, |b´d|u.
19Our asymptotic framework does not preclude documents that are ‘sparse’ (in the sense of

using only a few terms of the vocabulary). Our assumption is only used to argue that the sample
frequency of a word in a document is a good approximation for its population frequency, which is
allowed to be zero.
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posterior means converges to the smallest interval containing the identified set for

λpB,Θq at P0.

In terms of the details of the proof, we exploit the weak consistency of πP to

approximate the range of posterior means. The proof has five main steps.

We first show (Lemma 4 in Appendix A.4) that λ˚, λ˚ as defined in (3)´ (4) are

continuous at P0 (the true population term-frequency matrix). Steps 2 and 3 show

that the continuity result above and the concentration of πP around P0 immediately

imply that EπP rλ
˚
pP q|Cs and EπP rλ

˚
pP q|Cs—which by Theorem 2 constitute the

smallest and largest posterior means—converge in probability to λ˚pP0q and λ
˚
pP0q.

Step 4 argues the range of values of λ over the NMFs of P0 is approximately the same

as the range of values of λ over the parameters pB,Θq that maximize the likelihood.

Finally, we show that the parameters that maximize the likelihood are those that

solve (5) and thus give an approximate NMF of pP (which need not be a rank K

matrix).

6 Illustration

We revisit the work of Hansen, McMahon and Prat (2018) (henceforth HMP)

studying the effects of increased ‘transparency’ on the discussion inside the Federal

Open Market Committee (FOMC) when deciding monetary policy. HMP focus on

FOMC transcripts from August 1987–January 2006. This period covers the 150

meetings in which Alan Greenspan was chairman. The transcripts can be obtained

directly from the website of the Federal Reserve.20 We followed HMP in merg-

ing the transcripts for the two back-to-back meetings on September 2003 and we

also dropped the meeting on May 17th, 1998.21 As a result we ended up with 148

documents.
20https://www.federalreserve.gov/monetarypolicy/fomc_historical.htm.
21The meetings on September 2003 are the only back-to-back meeting in the sample. Merging

them makes the LDA assumption of independence across documents more plausible in this example.
Regarding the meeting on May 17th, the beginning of the transcript states: “No transcript exists
for the first part of this meeting, which included staff reports and a discussion of the economic
outlook”.
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HMP exploit the Federal Reserve’s October 1993 decision to release past and fu-

ture transcripts of the FOMC.22 The question of interest is how this change affected

the discussion inside the committee. To this end, HMP use the LDA model to con-

struct several measurements that intend to summarize the discussions inside each

meeting. These measurements are regressed against the dummy for transparency

regime change after October 1993, as well as other covariates. We use their applica-

tion to illustrate the applicability of our algorithm. We focus on how ‘concentrated’

the discussions were before and after the change in transparency policy as we explain

in detail below.

We removed non-alphabetical words, words with length of one, and common

stop words. We also constructed the 150 most frequent bigrams (combinations of

two words) and 50 most frequent trigrams (three words). We then stemmed all the

words using a standard approach.23

When constructing the term-document matrix, we treated one entire meeting as

a document. This stands in contrast with the approach of HMP, which treats every

speaker’s interjection as a separate document. In our opinion, the independence of

documents in the corpus (which is assumed by the model) is more reasonable when

the analysis is conducted at the meeting level.24

HMP focus on two components of the transcripts: the economic situation dis-

cussion (FOMC1) and the monetary policy strategy discussion (FOMC2). These

sections are not sign-posted, but we manually tried to match the separation rules

used by HMP. At the end we construct two separate term-document matrices, one

for each section. The dimension of FOMC1 is 20, 293 ˆ 148 and that of FOMC2 is

11, 976 ˆ 148. The total words in each section are 1, 101, 549 and 475, 013, respec-
22After 1993 the FOMC members became aware that past transcripts existed and future would

be published with a 5 year lag. For more details concerning this natural experiment, see Meade
and Stasavage (2008).

23We used the Natural Language Toolkit (nltk) library in Python, its PorterStemmer package
for word stemming, and its Collocation package for the bigrams and trigrams.

24One critique to our choice of treating each full meeting as a document is that the number
of observations available to pin down the model’s parameters decreases (only 148 documents as
opposed to thousands of them). In our opinion this critique is not well-founded. We are not aware
of any formal theoretical result showing that the identified set of any scalar functional of interest
shrinks as the number of documents increases.
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Figure 3: Word cloud of terms in FOMC1 after preprocessing. The size of the
words are proportional to their frequencies. Words linked using underscore “_” are
bigrams (two words) or trigrams (three words).

tively.

For each section, we rank the remaining terms by their term frequency-inverse

document frequency (tf-idf) score and keep those with the highest tf-idf score: 200

terms for FOMC1 and 150 for FOMC2. We picked a smaller size of the vocabulary

compared to HMP to illustrate the approximation to the range of posterior means

discussed in Theorem 3, in which we require the number of words in each document

to be large relative to V and D. We are now left with two term-document matrices

of dimension 200 ˆ 148 and 150 ˆ 148 each. The average number of words per

meeting is 2309 (FOMC1) and 853 (FOMC2). Figures 3 and 4 plot the word clouds

for FOMC1 and FOMC2, respectively.

We focus on a very particular aspect of the discussion in each meeting: the ‘topic

concentration’, which we measure using the Herfindahl index of each document’s

topic distribution.25 This function is invariant to topic permutations. Let θi,t be

the weight of ith topic in meeting at time t, the Herfindahl index for the topic
25Since we define documents to be the text in each meeting, we cannot perform the similarity

measures at the speaker level as in HMP. We note that HMP also looked at Herfindahl index at
speaker level.
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Figure 4: Word cloud of terms in FOMC2 after preprocessing. The size of the words
are proportional to their frequencies.Words linked using underscore “_” are bigrams
(two words) or trigrams (three words).

distribution is given by

Ht ”

K
ÿ

i“1

θ2
i,t.

The interpretation of the Herfindahl index follows the standard logic of mar-

ket competition. If there is a topic that monopolizes the discussion in a meeting,

the Herfindahl index will be close to one. If there is perfect competition among

topics—that is, each of them appear with frequency 1{K—the index will be exactly

Kp1{K2q “ 1{K. Therefore, increases in the value of the index suggest a move

towards a less competitive, monothematic meeting. Following HMP, we choose the

number of latent topics to be K “ 40.

Another functional of interest in this application is the ‘transparency coefficient’

in the regression of the concentration measure on a dummy for the date in which

the Federal Reserve changed its transparency policy (October 1993) and controls.26

26We run the regression using all the observations (1987–2006), whereas in HMP only data from
1989 to 1997 are used.
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More precisely, the functional of interest is the parameter λ in the regression

Ht “ α ` λDpTransqt ` γXt ` εt. (11)

The controls Xt include a regression dummy, the Baker, Bloom and Davis (2016)

Economic Policy Uncertainty (EPU) index, a dummy for whether the meeting

spanned two days, the number of meeting attendants who hold a PhD degree, and

the number of unique stems used in that meeting.

6.1 Algorithm 1: NMFs of P

For Algorithm 1, we take J “ 200 draws from the posterior of pB,Θq and com-

pute P “ BΘ for each draw.27 We then takeM “ 120 random Non-Negative Matrix

Factorizations of P , as described in Appendix A.6, and compute λ˚pP q, λ˚pP q.28

Figures 5 and 6 below report the posterior means of λ˚pP q and λ˚pP q as well

as the posterior mean of the Herfindahl index across the 200 posterior draws for

FOMC1 and FOMC2, respectively.

In these figures, the red line is the posterior mean of the Herfindahl index under

the usual Dirichlet priors (with hyperparameters α “ 1.25 and η “ 0.025).29 This

particular choice of priors seems to suggest that the concentration in the first part

of the meetings (FOMC1) indeed increased over time, and potentially more so after

October 1993. The shaded area is the approximation to the range of posterior means

for the the Herfindahl index. In contrast to the red line, the range appears to be

constant over time (even though the lower bound for FOMC1 does seem to increase
27We used the variational Bayes algorithm in Hoffman, Bach and Blei (2010) to approximate

the posterior distribution of B and Θ.
28The number M is such that the probability that a randomly drawn value of the posterior

mean falls in the true range, but not in its approximation or vice-versa (misclassification error) is
at most 5.88% with probability at least 94.22% (ε “ δ “ 0.0588). This follows from the results of
Montiel Olea and Nesbit (2020) to ‘(machine) learn’ parameter regions.

29This corresponds, for each meeting, to a prior mean for the Herfindahl index of

1

K

„

K ´ 1

Kα` 1
` 1



“ .0441.
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Figure 5: The Herfindahl index measure of topic concentration for FOMC1, com-
puted using Algorithm 1. The shaded region represents the prior robust Herfindahl
index for at each meeting. The thick red line represents the average Herfindahl
index computed across all posterior draws. The vertical blue line represents the
transparency change in 1993.

after 1994).

This algorithm has two layers that allow for parallel computation. Each of the

J posterior draws of P could be factorized on a separate core and so does the M

factorizations of P . We followed a nonparallel implementation in a standard laptop

(@2.8GHz with 16G RAM) with an execution time of about 10 hours. This means

that each evaluation of λ˚pP q and λ˚pP q took about 3 minutes.

Tables 1 and 2 further report estimates of the regression in Equation (11) for

FOMC1 and FOMC2.30

D(Trans) D(Recession) EPU D(2 days) # PhDs # Stems

Coef Min -0.010 -0.011 -0.000 -0.006 -0.003 -0.000
Coef Max 0.008 0.012 0.000 0.006 0.003 0.000

Table 1: Results of eq. (11) for FOMC1 using Algorithm 1.
30For replication code, see this GitHub repository.
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Figure 6: The Herfindahl index measure of topic concentration for FOMC2, com-
puted using Algorithm 1. The shaded region represents the prior robust Herfindahl
index for at each meeting. The thick red line represents the average Herfindahl in-
dex computed across all posterior draws.The vertical blue line represents the trans-
parency change in 1993.

D(Trans) D(Recession) EPU D(2 days) # PhDs # Stems

Coef Min -0.009 -0.013 -0.000 -0.007 -0.003 -0.000
Coef Max 0.008 0.014 0.000 0.007 0.003 0.000

Table 2: Results of eq. (11) for FOMC2 using Algorithm 1.

6.2 Algorithm 2: NMFs of pP

For Algorithm 2, we directly take M “ 120 random Nonnegative Matrix Factor-

ization of the sample term-document frequency matrix P̂ . We use weights Wt,d “

Nd{N . To implement the algorithm, we decided to take the posterior draws of pB,Θq

as the starting point of the NMF factorization.31

31Note that if the NMF algorithm happened to get stuck in the initial condition, then the NMF
factorization of pP would not be very different to reporting the range of the posterior draws of
λpB,Θq.
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Figures 7 and 8 present the results for FOMC1 and FOMC2, respectively. In

contrast to Figure 5, the analysis of FOMC1 based on pP suggests that the upper

bound for the Herfindahl index increases after October 1993. Based on Theorem 3,

and the fact that V and D are small relative to the number of words per document,

we expected the bounds in Figures 7 and 8 to lie closer to each other. The difference

in the figures might suggest that the asymptotic regime used in Theorem 3 might

not provide a good approximation for this data set. We remind the reader that Al-

gorithm 2 still can be interpreted as reporting the value of λ over all the maximizers

of the LDA likelihood.

Figure 7: The Herfindahl index measure of topic concentration for FOMC1 com-
puted using Algorithm 2. The shaded region represents the prior robust Herfindahl
index for each meeting. The thick red line represents the posterior mean of the HHI
index. The vertical blue line represents the transparency change in 1993.

Tables 3 and 4 report the regression results.
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Figure 8: The Herfindahl index measure of topic concentration for FOMC2 com-
puted using Algorithm 2. The shaded region represents the prior robust Herfindahl
index for each meeting. The thick red line represents the posterior mean of the HHI
index. The vertical blue line represents the transparency change in 1993.

D(Trans) D(Recession) EPU D(2 days) # PhDs # Stems

Coef Min -0.027 -0.031 -0.001 -0.019 -0.008 0.000
Coef Max 0.038 0.022 0.000 0.006 0.008 0.000

Table 3: Results of eq. (11) for FOMC1 using Algorithm 2.

D(Trans) D(Recession) EPU D(2 days) # PhDs # Stems

Coef Min -0.011 -0.015 0.000 -0.004 -0.005 0.000
Coef Max 0.013 0.019 0.000 0.005 0.002 0.000

Table 4: Results of eq. (11) for FOMC2 using Algorithm 2.
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7 Conclusion

This paper studied the Latent Dirichlet Allocation (LDA) of Blei, Ng and Jordan

(2003), a popular Bayesian model for the analysis of text data.32

This paper showed that the parameters of the LDA model are not identified:

there are different parameter combinations that induce the same distribution over

observables, even beyond topic permutations (Theorem 1). This lack of identification

is generic: most of the points in the parameter space have observationally equivalent

counterparts. Theorem 1 thus suggests that the choice of priors will affect the

model’s output, even with infinite data.

Using recent results from the robust Bayes literature the paper characterized, the-

oretically and algorithmically, how much a given continuous real-valued function λp¨q

of the model’s parameters varies in response to a change in the prior (Theorem 2).

In particular, Theorem 2 provided a closed-form expression for the largest/smallest

values for the posterior mean of λ over a class of priors defined by a distribution

over P , the population matrix containing the term-document probabilities.

Leveraging on the closed-form characterization of the largest/smallest posterior

mean of λ, this paper suggested two algorithms (Algorithm 1-2) that can be used to

described this range. Both of our algorithms rely on obtaining Nonnegative Matrix

Factorizations (NMF) of either the posterior draws of the population term-document

frequency matrix (P ) or of its sample analogue ( pP ). In both cases, the key idea is

to maximize/minimize the functional of interest over all the possible nonnegative

matrix factorizations of these matrices.

The use of NMF for text analysis has been suggested before by Arora, Ge and

Moitra (2012). However, to the best of our knowledge, the robust algorithms for text

analysis herein suggested are novel.

32The paper of Blei, Ng and Jordan (2003) has more than 35,000 citations according to Google
Scholar.
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A Appendix

A.1 Proof of Theorem 1

Proof. Take a column stochastic matrix B with K linearly independent columns

with all elements different from zero. Such a matrix can always be constructed.

Take an arbitrary column stochastic matrix Θ of dimension K ˆD. Let P ˚ ” BΘ.

It suffices to show that there are other column stochastic matrices pB1,Θ1q that

are not permutations of pB,Θq that satisfy the equation

P ˚ “ B1Θ1. (12)

Typically, any pair of non-negative matrices (not necessarily stochastic) that solve

Equation (12) is called an exact Non-negative Matrix Factorization (NMF) of P ˚;

see Equation (1) in Laurberg et al. (2008). Thus, by construction, the pair pB,Θq

is a NMF of P ˚.

Suppose the column stochastic matrices pB,Θq that solve Equation (12) are

unique up to permutations. This implies that the set of non-negative matrices (not

necessarily column stochastic) that solve Equation (12) must be unique up to a scaled

permutation; that is, unique up to right multiplying B by a matrix P ¨D (where P

is a permutation matrix and D is a positive diagonal matrix) and left multiplying

Θ by pP ¨ Dq´1.33 Theorem 3 in Laurberg et al. (2008) and the uniqueness of the

non-negative matrix factorization of P ˚ (up to scaled permutation) implies that the

set of V row vectors in B must be boundary close. Definition 5 in Laurberg et al.

(2008) says that a collection of V vectors ts1, . . . , sV u in RK
` is boundary close if for

33If the non-negative solutions of Equation (12) (without imposing column stochasticity) were
not unique up to a scaled permutation, then there would be non-negative matrices pa, bq, pc, dq such
that ab “ P˚ “ cd, but neither pa, cq nor pb, dq are related to one another by a scaled permutation.
LetQa denote the diagonal matrix that contains the sums of the columns of a. Clearly, ã ” apQaq

´1

is column stochastic. Moreover, since P˚ is column stochastic, a straightforward argument implies
that so is b̃ ” pQaqb. Defining c̃ and d̃ analogously we have found two pairs of column stochastic
matrices (not related to one another by a permutation) such that ãb̃ “ P˚ “ c̃d̃. Thus, if the
column stochastic matrices that solve Equation (12) are unique up to permutation, then the non-
negative matrices (not necessarily column stochastic) that solve Equation (12) are unique up to
scaled permutation.
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any i ‰ j we can find v P t1, . . . , V u such that sv,i “ 0 and sv,j ‰ 0.

Note, however, that the set of row vectors in B cannot be boundary close, as B

was chosen to have all of its elements different from zero.

A.2 Anchor Words and Anchor Documents

Proposition 1. Take B “ pβ1, . . . , βkq and Θ “ pθ1, . . . , θdq for which:

a) There exists K different terms pt1, . . . , tkq in the vocabulary such that

βtk,k ‰ 0, but βtk,k1 “ 0 for all k1 ‰ k.

b) There exists K different documents pd1, . . . , dkq such that

θk,dk “ 1.

pB,Θq is identified, up to topic permutations.

Proof. Without loss of generality, suppose that words in the vocabulary are ordered

in such a way that the term tk corresponds to the k-th element in the vocabulary.

Suppose also that the documents are ordered in such a way that the k-th document

loads entirely on topic k, for k P t1, . . . , Ku.

By Theorem 5 in Laurberg et al. (2008) p. 5, it is sufficient to show that the col-

lection of column vectors rB1,Θs is sufficiently spread and strongly boundary closed.

The set containing the pV `Dq RK-valued vectors rB1,Θs is said to be sufficiently

spread if for any k “ 1, . . . , K and any ξ ą 0 there is a RK-valued element s in the

collection for which

sk ą ξ
ÿ

i‰k

si. (13)

By the remark at the beginning of the proposition, the first K columns of B1 equal
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a diagonal matrix of dimension K ˆK matrix with diagonal elements

pβ1,1, β2,2, . . . , βK,Kq.

Thus, for any pk, ξq we can take s to be the k-th column of B1. The presence of

anchor words implies that condition (13) is satisfied:

βk,k “ 1 ą ξ
ÿ

i‰k

βi,k “ 0.

We only have to show that the column vectors of rB1,Θs are strongly boundary

closed.

The set containing the pV `Dq RK-valued vectors rB1,Θs is said to be strongly

boundary closed if there exists ζ such that for any ξ ą 0 and k˚ P t1, . . . , K ´ 1u

there are K ´ k˚ vectors ts1, . . . , sK´k
˚

u from the collection such that:

1. For any j P t1, . . . , K ´ k˚u we have

sjk˚ ă ξ
ÿ

iąk˚

sji . (14)

2.

κ
´

rPk˚s
1, . . . , Pk˚s

K´k˚
s

¯

ď ζ, (15)

where Pk˚ P RK´k˚ˆK denotes the matrix that selects the last K´k˚ elements

of a given vector in RK ; and κp¨q denotes the ratio between the largest and

smallest singular value of a given matrix.

We show that Conditions 1 and 2 are verified by rB1,Θs for ζ “ 1 due to the presence

of anchor documents.

First we verify Condition 1. Fix arbitrary ξ ą 0 and k˚ P t1, . . . , K ´ 1u. Take

the collection of K ´ k˚ vectors collecting the topic composition of the documents

with indices k˚ ` 1 to K:

tθk˚`1, . . . , θKu.
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Equation (14) is satisfied because these are anchor documents. For any j P tk˚ `

1, . . . , Ku

θk˚,j “ 0 ă ξ
ÿ

iąk˚

θi,j “ ξ ¨ θj,j “ ξ.

This follows from the fact that, due to remark, the k-th documents loads on topic

k.

We only have to verify Condition 2. Note, however, that

rPk˚s
1, . . . , Pk˚s

K´k˚
s “ IK´k˚ .

Therefore, the ratio between the largest and smallest eigenvalue is always one.

A.3 Proof of Theorem 2

It is sufficient to verify that the assumptions of Giacomini and Kitagawa (2020),

Theorem 2 hold.

We verify their Assumption 1. First, πP is a proper prior, which is satisfied by

assumption. Second, the space of reduced-form parameters is given by all matrices

P of rank at most K for which there exists pB,Θq P ΓK s.t P “ BΘ. Hence the

identified set for pB,Θq given P (e.g., (10)) and the identified set for λpB,Θq are

non-empty, by construction. The function mapping the structural parameters to the

reduced form parameters, pB,Θq ÞÑ BΘ, is continuous (hence, measurable and with

a closed inverse image). The function mapping the structural parameters to the

object of interest λ is also continuous, by assumption (and hence, also measurable

and with a closed inverse image).

Finally, we need to ensure the integrability of λ˚, λ˚. The function λ is contin-

uous, which implies that λ˚, λ˚ are almost surely continuous (see Appendix A.7).

Since the space of column stochastic matrices of rank at most K is compact, these

functions are bounded.
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A.4 Proof of Theorem 3

Given a V ˆ D column stochastic matrix P of rank K we remind the reader that

we have defined

λ˚pP q ” min
B,ΘPΓK

λpB,Θq s.t. BΘ “ P

and

λ
˚
pP q ” max

B,ΘPΓK

λpB,Θq s.t. BΘ “ P.

in eqs. (3) and (4) of the paper.

Proof. We prove the theorem in five steps.

Step 1: Lemma 4 in Appendix A.7 shows that λ˚ and λ˚ are continuous.

Step 2: Our Theorem 2 (based on Theorem 2 in Giacomini and Kitagawa (2020))

shows that in any finite sample the range of posterior means over ΠB,ΘpπP q is given

by

„
ż

λ˚pP qdπppP |Cq,

ż

λ
˚
pP qdπP pP |Cq



.

Step 3: Since πP leads to a (weakly) consistent posterior in the sense that, for any

neighborhood V0 of P0

πP pP R V0|Cq
p
Ñ 0,

we show that

ż

λ˚pP qdπppP |Cq
p
Ñ λ˚pP0q, and

ż

λ
˚
pP qdπP pP |Cq

p
Ñ λ

˚
pP0q.
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The convergence result follows from the algebra below:

∣∣∣∣ż λ˚pP qdπP pP |Cq ´ λ˚pP0q

∣∣∣∣ “ ∣∣∣∣żpλ˚pP q ´ λ˚pP0qqdπP pP |Cq

∣∣∣∣
(as

ż

dπP pP |Cq “ 1),

ď

ż

P :PPV0

|λ˚pP q ´ λ˚pP0q|dπP pP |Cq

`

ż

P :PRV0

|λ˚pP q ´ λ˚pP0q|dπP pP |Cq

ď sup
P :PPV0

|λ˚pP q ´ λ˚pP0q|

` 2

ˆ

sup
P :PRV0

|λ˚pP q|
˙

πP pP R V0|Cq.

The compactness of ΓK and the weak consistency of the posterior then implies (by

the Theorem of the Maximum):

∣∣∣∣ż λ˚pP qdπP pP |Cq ´ λ˚pP0q

∣∣∣∣ ď sup
P :PPV0

|λ˚pP q ´ λ˚pP0q|` opp1q.

Using the continuity of λ˚p¨q at P0 shown in Lemma 4 yields

∣∣∣∣ż λ˚pP qdπP pP |Cq ´ λ˚pP0q

∣∣∣∣ “ opp1q.

An analogous argument gives the result for the upper limit. Consequently, this step

shows that bounds of the range

„
ż

λ˚pP qdπppP |Cq,

ż

λ
˚
pP qdπP pP |Cq



converge in probability to

”

λ˚pP0q, λ
˚
pP0q

ı

.

Step 4: Let pPMLE be defined as the V ˆ D column stochastic matrix of rank at
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most K that solves the problem

max
PPSK

VˆD

D
ź

d“1

V
ź

t“1

pP q
nt,d

t,d .

As the number of words per document Nd Ñ 8 for each d, then

pPMLE
p
Ñ P0. (16)

The continuity of λ˚p¨q and λ˚p¨q at P0 then gives

λ˚p pPMLEq
p
Ñ λ˚pP0q, and λ

˚
p pPMLEq

p
Ñ λ

˚
pP0q.

By definition

λ˚p pPMLEq “ min
B,ΘPΓK

λpB,Θq s.t. BΘ “ pPMLE.

However, pB,Θq is such that BΘ “ pPMLE if and only if pB,Θq solves the problem

max
pB,ΘqPΓK

D
ź

d“1

V
ź

t“1

pBΘq
nt,d

t,d .

Consequently,

λ˚p pPMLEq “ λp pPMLEq ” min
B,ΘPΓK

λpB,Θq s.t. pB,Θq solve max
pB,ΘqPΓK

D
ź

d“1

V
ź

t“1

pBΘq
nt,d

t,d .

Step 5: The last step in the proof will show that pB,Θq solves the problem

max
pB,ΘqPΓK

D
ź

d“1

V
ź

t“1

pBΘq
nt,d

t,d (17)

if and only if pB,Θq solves the problem

min
pB,ΘqPΓK

D
ÿ

d“1

Nd

N

«

V
ÿ

t“1

P̂t,d log
P̂t,d

pBΘqt,d
´ P̂t,d ` pBΘqt,d

ff
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where P̂t,d denote the matrix with pt, dqth entry given by nt,d{Nd.

Solving the problem (17) is the same as minimizing the negative of the log-

likelihood

min
pB,ΘqPΓK

D
ÿ

d“1

V
ÿ

t“1

´nt,d logpBΘqt,d.

Adding a constant
řD
d“1

řV
t“1 nt,d log P̂t,d which does not depend on neither B nor

Θ will not change the minimization problem, which now becomes

min
pB,ΘqPΓK

D
ÿ

d“1

V
ÿ

t“1

nt,d log
P̂t,d

pBΘqt,d
.

First note that nt,d “ NdP̂t,d, hence we have

min
pB,ΘqPΓK

D
ÿ

d“1

V
ÿ

t“1

NdP̂t,d log
P̂t,d

pBΘqt,d
.

Second, as B and Θ are constrained to be column stochastic, their product is also

column stochastic:
řV
t“1pBΘqt,d “ 1. Hence

V
ÿ

t“1

rP̂t,d ´ pBΘqt,ds “ 1´ 1 “ 0.

Therefore

D
ÿ

d“1

V
ÿ

t“1

Ndr pPt,d ´ pBΘqt,ds “ 0.

The minimization problem is thus equivalent to

min
pB,ΘqPΓK

D
ÿ

d“1

Nd

V
ÿ

t“1

pPt,d log
pPt,d

pBΘqt,d
´ pPt,d ` pBΘqt,d.

Thus the two problems are equivalent. This shows that λp pPMLEq “ minB,ΘPΓK
λpB,Θq
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subject to

pB,Θq solves min
pB,ΘqPΓK

D
ÿ

d“1

Nd

V
ÿ

t“1

pPt,d log
pPt,d

pBΘqt,d
´ pPt,d ` pBΘqt,d,

where pP is the term-document frequency matrix. We conclude that λp pPMLEq is the

same as evaluating the functional λ over all (column stochastic) Non-negative matrix

factorizations of pP .

A.5 NMFp pP ,Wt,dq is non-empty

Proof. First we will show that the NMF of a column stochastic matrix pP is such

that the product BΘ is column stochastic. Then we will show this implies we can

find a non-negative matrix factorization where B and Θ are column stochastic.

Let

KLpP̂ ||BΘq :“
D
ÿ

i“1

Nd

V
ÿ

t“1

«

P̂t,d log

˜

P̂t,d
pBΘqt,d

¸

´ Pt,d ` pBΘqt,d

ff

.

Step 1: The KKT conditions for the (unconstrained) NMF are

@t, k, @k, d;

Bt,k ě 0, Θk,d ě 0; (18)

BKLpP ||BΘq

BBt,k

ě 0,
BKLpP ||BΘq

BΘk,d

ě 0; (19)

Bt,k
BKLpP ||BΘq

BBt,k

“ 0, Θk,d
BKLpP ||BΘq

BΘk,d

“ 0; (20)

Where

BKLpP ||BΘq

BBt,k

“ ´

D
ÿ

d1“1

Nd1
Pt,d1

pBΘqt,d1
Θk,d1 ´Θk,d1 ,

BKLpP ||BΘq

BΘk,d

“ ´Nd

V
ÿ

t1“1

Pt1,d
pBΘqt1,d

Bt1,k ´Bt1,k. (21)

Plugging eq. (21) into eq. (20), at a stationary point the matrix Θ must satisfy for

42



all k, d:

Θk,d

V
ÿ

t1“1

Pt1,d
pBΘqt1,d

Bt1,k “ Θk,d

V
ÿ

t1“1

Bt1,k.

Summing over topics k yields

K
ÿ

k“1

Θk,d

V
ÿ

t1“1

Pt1,d
pBΘqt1,d

Bt1,k “

K
ÿ

k“1

Θk,d

V
ÿ

t1“1

Bt1,k. (22)

The LHS of eq. (22) is:

K
ÿ

k“1

Θk,d

V
ÿ

t1“1

Pt1,d
pBΘqt1,d

Bt1,k “

V
ÿ

t1“1

˜

K
ÿ

k“1

Bt1,kΘk,d

¸

Pt1,d
pBΘqt1,d

“

V
ÿ

t1“1

Pt1,d “ 1,

where the last equality follows from P̂ being a stochastic matrix. The RHS of

eq. (22) is:

K
ÿ

k“1

Θk,d

V
ÿ

t1“1

Bt1,k “

V
ÿ

t1“1

K
ÿ

k“1

Bt1,kΘk,d “

V
ÿ

t1“1

pBΘqt1,d.

Equating the LHS and the RHS,
řV
t1“1pBΘqt1,d “ 1, which is to say that at a

stationary point, the product of the BΘ is a stochastic matrix.

Step 2: Now we will show that there are non-negative matrix factorizations that

are column stochastic. Let pB,Θq be a non-negative matrix factorization of pP as in

Definition 1.

Let e1d be a vector of ones of size d. Define the diagonal matrix Q with elements

equal to the sum of the columns of B; that is Qk,k “
1

řV
t1“1

Bt1,k

“ 1
pe1V Bqk

. Note that

since B is non-negative B̃ “ BQ is column stochastic, so it suffices to show that

Θ̃ “ Q´1Θ is also column stochastic.

A matrix A is column stochastic if e1A “ e1. Step 1 showed that the product

BΘ is column stochastic and therefore e1pBΘq “ e1. Therefore

e1 “ e1pBΘq “ e1pBQQ´1Θq “ e1pBQq ˚Q´1Θq “ e1pQ´1Θq,
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Where the last equality follows from B̃ being column stochastic (e1BQ “ e1), by

definition. We conclude that Θ̃ “ Q´1Θ is column stochastic as well.

A.6 Pseudo-code for NMF

Algorithm 3 Non-negative matrix factorization
procedure NMF(P̂ , W , K, ε, maxIter) Ź Initialize

Bp0q is a random V ˆK column stochastic matrix
Θp0q is a random K ˆD column stochastic matrix
KLp0q “ KLW pP ||B

p0qΘp0qq

for t “ 1 : maxIter do Ź Update
Θpt`1q “

rΘptqs

rpBptqq1W̃ s
˝

´

pBptqq1 rW̃˝P s
rBptqΘptqs

¯

Bpt`1q “
rBptqs

rW̃ pΘpt`1qq1s
˝

´

rW̃˝P s

rBptqΘpt`1qs
pΘpt`1qq1

¯

if KLpt`1q ´KLptq ă ε then Ź Tolerance
BpMq “ Bptq

ΘpMq “ Θptq

break
end if

end for
Q “ r1s

re1V Bs
Ź Normalize

B̃ “ BpMqQ
Θ̃ “ Q´1ΘM

return B̃, Θ̃
end procedure
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A.7 Continuity of λ˚, λ
˚

Lemma 4. Let 1 ă K0 ď mintV,Du denote the rank of the V ˆD column stochastic

matrix P0. Assume that λ is continuous in B,Θ. Then λ˚ and λ
˚
are continuous

at P0.

Proof. Let ENMF pP q denote the set of column stochastic matrices pB,Θq P ΓK

such that BΘ “ P . That is, ENMF pP q is the set of rank K exact non-negative

matrix factorizations of the matrix P .

Given that λ is continuous in (B,Θ), by the Theorem of the Maximum, the

continuity of λ˚ and λ
˚ is obtained if the set ENMF pP q can be shown to be a

continuous correspondence at P “ P0. This will involve showing that the corre-

spondence is both upper and lower hemi-continuous.

Because ENMF pP q is closed and bounded (i.e. compact valued), it suffices to

verify the following notions of sequential continuity (Ok, 2007, p. 218 & 224).

• ENMF pP q is upper hemi-continuous at P “ P0: for any sequence pPmq and

pBm,Θmq with Pm Ñ P0 and pBm,Θmq P ENMF pPmq, there exists a subse-

quence of pBm,Θmq that converges to a point in ENMF pP0q.

• ENMF pP q is lower hemi-continuous at P “ P0: for any Pm with Pm Ñ P0,

and any pB0,Θ0q P ENMF pP0q, there exists a sequence pBm,Θmq such that

pBm,Θmq Ñ pB0,Θ0q and pBm,Θmq P ENMF pPmq for each m.

Upper hemi-continuous: As pBm,Θmq is a sequence in the compact space ΓK ,

it has a convergent subsequence pBm,Θmq Ñ pB˚,Θ˚q, where pB˚,Θ˚q P ΓK . Since

pBm,Θmq P ENMF pPmq, we have that BmΘm “ Pm. This implies B˚Θ˚ “ P0.

Consequently, pB˚,Θ˚q P ENMF pP0q. Hence ENMF pP q is upper hemi-continuous

at P “ P0.

Lower hemi-continuous: Define DpXq as a diagonal matrix where each entry is

the inverse of the column sum of X, and MpXq “ XDpXq.
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Let Pm Ñ P0 be an arbitrary sequence. By assumption, for all m large enough

ENMF pPmq ‰ H. This implies there exists pB˚m,Θ˚
mq P ENMF pPmq—that is,

B˚mΘ˚
m “ Pm—where B˚m is a V ˆK matrix of rankK. Since Pm Ñ P0 and pB˚m,Θ˚

mq

belong to the compact set ΓK we can assume w.l.o.g that pB˚m,Θ˚
mq converges to

some pB˚0 ,Θ˚
0q P ENMF pP0q.

We will now show that for an arbitrary pB0,Θ0q P ENMF pP0q one can use the

sequence of matrices tB˚mu to construct an alternative sequence of column stochastic

matrices tpBm,Θmqu that converges to pB0,Θ0q. Without loss of generality, we can

assume that none of the entries of either B0 nor Θ0 equal 1.

We introduce some auxiliary notation. For a matrix A (and in a slight abuse of

notation) let Aj denote its jth column. For a vector a let Ra denote the matrix that

selects the components of a that are equal to zero. Let RKa denote the matrix that

selects the components of a that are non-zero. Let da be the number of zero entries

in a.

Construction of the sequence of column stochastic matrices Bm: De-

fine the matrix Bm with jth column given by a linear combination of the columns of

B˚m:

Bj
m ”MpB˚mβ

j
mq, (23)

where

βjm ” arg min
βPRK

pBj
0 ´B

˚
mβq

1
pBj

0 ´B
˚
mβq s.t. RBj

0
B˚mβ “ 0d

B
j
0
ˆ1. (24)

Problem (24) is a least-squares projection problem with a linear equality constraint.

The matrix RBj
0
B˚m selects dBj

0
rows of B˚m, with indices that correspond to the

zero-entries of Bj
0. Without loss of generality, assume that RBj

0
B˚m has rank dBj

0
.34

34If we select two rows that are linearly dependent, one could drop one of these rows.
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It is well known that the first-order conditions of (24) are given by

2B˚m
1
pBj

0 ´B
˚
mβ

j
mq “ B˚m

1R1
Bj

0
µ,

where µ is the vector of Lagrange multipliers on the equality constraints. Since

RBj
0
B˚m has rank dBj

0
, the vector of Lagrange multipliers is given by

µ “ 2
´

RBj
0
B˚mpB

˚
m
1B˚mq

´1B˚m
1R1

Bj
0

¯´1

RBj
0
B˚mpB

˚
m
1B˚mq

´1B˚m
1Bj

0,

and the solution of (24), βjm, is given by

βjm “

ˆ

IK ´ pB˚m
1B˚mq

´1B˚m
1R1

Bj
0

´

RBj
0
B˚mpB

˚
m
1B˚mq

´1B˚m
1R1

Bj
0

¯´1

RBj
0
B˚m

˙

pB˚m
1B˚mq

´1B˚m
1Bj

0.

Since B˚m Ñ B˚0 , then βjm converges to βj0, which is defined as

ˆ

IK ´ pB˚0
1B˚0 q

´1B˚0
1R1

Bj
0

´

RBj
0
B˚0 pB

˚
0
1B˚0 q

´1B˚0
1R1

Bj
0

¯´1

RBj
0
B˚0

˙

pB˚0
1B˚0 q

´1B˚0
1Bj

0.

Moreover, because B˚0 Θ˚
0 “ P0 “ B0Θ0 then both B˚0 and B0 belong to the span of

P0, which has rank K. This means that there exists an invertible K ˆK matrix Q

such

B0Q “ B˚0 .

We will now show that βj0 “ Q´1ej (where ej is the jth column of the identity

matrix) and therefore

Bj
m ÑMpβ˚0Q

´1ejq “MpBj
0q “ Bj

0.

To this end, it is sufficient to show

RBj
0
B˚0 pB

˚
0
1B˚0 q

´1B˚0
1Bj

0 “ 0d
B
j
0
ˆ1.
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Since B0Q “ B˚0 , we have

B˚0 pB
˚
0
1B˚0 q

´1B˚0
1Bj

0 “ Bj
0.

By definition RBj
0
Bj

0 “ 0d
B
j
0
ˆ1, so algebra shows that

βj0 “ pB
˚
0
1B˚0 q

´1B˚0
1Bj

0

“ Q´1
pB10B0q

´1B0B
j
0

“ Q´1B0ej.

We conclude that

Bj
m ÑMpβ˚0Q

´1ejq “MpBj
0q “ Bj

0,

which implies

Bm Ñ B0.

It only remains to show that Bm is a column stochastic matrices for m large

enough. By construction, the columns of Bm add up to 1. Also, for all the zero

entries of the matrix B0 the corresponding elements of Bm are also 0. Finally, since

all the other elements are strictly between 0 and 1, the definition of convergence

implies that for m large enough the entries of Bm are strictly between 0 and 1.

Construction of the sequence of column stochastic matrices Θm: We

construct Θm column by column, as we did with Bm. Write

Bm “

„

B1
m . . . BK

m



,
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and define

Baux
m ” BmpR

K

θj0
q
1.

These are the columns of Bm whose limit appears in the linear combination defining

P j
0 (there are K ´ dΘj

0
of them). Define also the K ´ dΘj

0
vector

Θj
m

aux
”MppBaux

m
1Baux

m q
´1Baux

m
1P j
mq.

This construction guarantees that Baux
m Θj

m
aux

“ P j
m. Finally, define implicitly the

K ˆ 1 vector Θj
m to be the vector such that

RK
Θj

0
Θj
m “ Θj

m

aux
,

with all other entries equal to 0, that is, Rθj0
Θj
m “ 0d

Θ
j
0
ˆ1.

Now, we will show that Θj
m Ñ Θj

0 and that Θj
m is a stochastic matrix. Algebra

shows that

RK
Θj

0
Θj
m ÑMppBaux

0
1Baux

0 q
´1Baux

0
1P j

0 q “ RK
Θj

0
Θj

0.

This follows from the fact that only the non-zero entries of Θj
0 are used to construct

P j
0 . Moreover, by the definition of convergence, the elements of RK

Θj
0

Θj
m are in the

interval p0, 1q for large enough m. Since all the other entries of Θj
0 are zero, we

conclude

Θj
m Ñ Θj

0.

This means that the matrix Θm “ rΘ
1
m, . . . ,Θ

D
ms converges to Θ0 and it is a column

stochastic matrix for m large enough.

Conclusion: For an arbitrary pB0,Θ0q P ENMF pP0q, we have constructed a se-

quence pBm,Θmq, s.t. pBm,Θmq Ñ pB0,Θ0q, and pBm,Θmq P ENMF pPmq. There-
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fore ENMF pP q is lower hemi-continuous at P “ P0.
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