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1 Introduction

Text data is being increasingly used in applied economics research to infer latent in-
formation that is otherwise unobservable using standard data sources. The implicit
assumption of this research is that there exists exogenous unobservable random vari-
ables that generate both the text and the tabular data. This link between text and
data is used informally to infer the responses of variables of interest to changes in
these unobservables through variation in the composition of the text.

These exogenous unobservables can be structural macroeconomic shocks which drive
the evolution of macroeconomic variables, as well as the generation of policy docu-
ments. Romer and Romer (2004) uses transcripts and other materials from Federal
Open Market Committee (FOMC) meetings to identify exogenous monetary policy,
and Romer and Romer (2010) uses presidential speeches and Congressional reports
to identify exogenous fiscal policy. These exogenous unobservables can also be mar-
ket or company specific news which drives equity prices and newspaper reporting.
Tetlock (2007) uses a popular column in the Wall Street to quantify the effect that
sentiment has on market returns. Ke, Kelly, and Xiu (2020) uses a more compre-
hensive collection of Wall Street Journal articles to quantity the effect of news on
individual equity returns.

This paper builds a model of text that formalizes an explicit link between text
and quantitative data. Our starting point is a simple IV model with a single right
hand side endogenous variable. We posit the existence of a random variable that
can be used as an instrument, but is unobserved and can only be inferred from an
auxiliary corpus of text. This instrument appears as a taste shifter in a random
utility model of text generation, where documents are formed as an independent
sequence of terms chosen from a vocabulary. The utility of a term depends on this
unobserved instrument as well as the variables from the quantitative model. This
creates tension, as the probability of most terms are relevant to the endogenous
variable (one of the requirements of an instrument), but are not exogenous.

As a motivating example, consider the problem of identifying monetary policy shocks
from transcripts of the FOMC meetings using a Local Projections IV (Ramey 2016).
There are two other shocks in the model, an output shock and an inflation shock, and
we assume that policy makers plan the policy responses to these shocks during these
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meetings. Suppose we were to use the frequency of the term ‘monetary policy ’ or
‘interest rates’ as an instrument for our monetary policy shocks. We would expect
that there would be increased discussion about ‘monetary policy ’ when there is a
monetary policy shock, so this frequency is relevant. However, we would also expect
that the frequency of ‘monetary policy ’ would increase when there is an inflation or
output shock, as policy makers discuss the policy response to these shocks. Hence the
frequency of ‘monetary policy ’ would not be exogenous, and not a valid instrument.

Under a parametric distributional assumption, the conditional probabilities of terms
take logit form, and we show that the log odds ratio of the likelihood of two special
terms, which are not shifted by the unobservables from the quantitative model, are
valid instruments. We argue that in order to find such terms, we should include
additional events to the information set of our text model. These include events
observable in the text, which we refer to as context, such as the presence or absence
of certain terms within the same document, or the similarity of the current documents
with others in the corpus. Returning to our example, we condition on the context
that terms similar to ‘inflation’ and ‘output ’ do not appear nearby discussion of
‘monetary policy ’. Conditional on this event, the log odds ratio of ‘monetary policy ’
and ‘interest rates’ is a valid instrument.

We show that this result can be generalized to the generalized log odds of a set of
terms. This is a weighted sum of log probabilities such that the weights sum to zero.
Under a generalization of our previous assumption, we show that the generalized log
odds of a set of terms that is not shifted by the unobservables from the quantitative
model is a valid instrument. This generalization is natural as many synonyms of a
term may appear in a corpus.

Estimation is a two stage procedure: instruments are estimated using the conditional
frequencies of a set of terms satisfying our assumptions, then used as a plug-in esti-
mator. We show consistency and asymptotic normality of our two stage estimator.If
the size of each document, N , does not grow too slowly relative to the time di-
mension T ,

a

logpT q{N Ñ 0, then there is no generated regressors problem and
conventional HAC covariance estimators can be used. Our estimation procedure is
straightforward and computationally simple.

We present two empirical exercises. The first empirical application is to identify mon-
etary policy using transcripts from the FOMC meetings. We use the generalized log
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odds of synonyms of ‘monetary policy ’, and condition on the context that synonyms
of ‘inflation’ and ‘output ’ do not appear nearby. Our estimated impulse responses
do not suffer from the price puzzle (Sims (1986)), inflation decreases on impact due
to a contractionary monetary policy shock. Additionally the effect output falls on
impact and gradually returns to baseline.

The second empirical application is to quantity the effects of ‘fresh’ or contempo-
raneous news on individual equity returns. We use the sentiment of an article as
our right hand endogenous variable and argue that it is endogenous due to reporting
on past events, or ‘stale’ news. We use ‘sentiment-charged words’ from Ke, Kelly,
and Xiu (2020) as an instrument, conditioning on the context that discussion of the
past, terms like ‘yesterday ’, ‘last week ’, or the three weekends prior to an article’s
publication date do not appear in the same article. We find that by controlling for
the effect of stale news, the effect that sentiment has on individual equity returns is
far greater.

Related literature: There is an applied economics literature that informally links
text and data to infer the responses to latent information in the text. Early work in
macroeconomics uses the ‘narrative record’ to identify structural shocks (Friedman
and Schwartz (1963) and Romer and Romer (1989, 2004, 2010)), where human read-
ers quantify the latent variables. More recently, Baker, Bloom, and Davis (2016)
and Engle et al. (2019) have used statistics derived from the text, but the relation-
ship between text and data is ‘one-sided’; these statistics enter into the quantitative
model, but there is no sense in which the quantitative variables enter into the gener-
ation of text. In our model of text generation, variables from the quantitative model
enter into utility of choosing a term. This allows us to document the difficulty in
finding statistics from the text that are exogenous, and also provides guidance in
constructing valid instruments.

Our model of text generates choice probabilities that take logit form. This form is
commonly used in machine learning and statistics and is motivated as a general-
ized linear model with a logistic link, Taddy (2013, 2015) and Gentzkow, Shapiro,
and Taddy (2019), or a neural language model with a softmax transform Bengio
et al. (2003) and Mnih and Hinton (2007). Often these models are used for predic-
tion, where the goal is to predict as accurately as possible given a set of covariates.
Gentzkow, Shapiro, and Taddy (2019) differs from the other papers, in that the goal
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is not merely prediction, but to infer the difference in term choice due to observable
speaker level characteristics, in this case the political affiliation of the speaker. In
contrast, we are not interested in explaining the variation in text, but rather using
the variation in the text to infer responses of variables of interest to unobservables.

Conditioning on context is a technique used in natural language processing and
machine learning, Shannon (1948), Mikolov et al. (2013b), and Mikolov et al. (2013a).
Like these papers, we condition on context to allow terms to have more specific
meanings than they would unconditionally.1 Unlike these papers, we use the added
specificity of context to find terms that are exogenous. These NLP models are
interested in an entire vocabulary for a prediction task, and use generic conditioning
events: n-gram models will condition on the previous n ´ 1 words and word vector
models will condition on the words that appear in a neighborhood around a given
word. The contexts we use in our empirical application instead condition on the
absence, rather than the presence of terms nearby. Additionally, we advocate for
using contexts that are less generic and more tailored to the particular application.

Our inference results connect to the literature on generated regressors and two step
estimation, Pagan (1984), Murphy and Topel (1985), and Newey and McFadden
(1994). Wooldridge (2010) shows that when instruments are generated from a model
with a finite dimensional parameter that, under certain moment conditions, estima-
tion of the instrument does not effect second stage inference. Our results instead
rely on a rate condition, but require weaker moment conditions for the instruments.
Bai and Ng (2008) show first stage estimation of a factor model does not affect sec-
ond stage inference, as long as

?
T {N Ñ 0.2 Our paper derives similar results but

with the rate condition that
a

logpT q{N Ñ 0. Additionally we extend this type of
analysis to a strong mixing DGP, which nests the i.i.d. case as a special case.

We contribute to the literature on the responses to monetary policy shocks (Romer
and Romer (1989, 2004), Gertler and Karadi (2015), and Nakamura and Steinsson
(2018)). Romer and Romer (1989, 2004) read through FOMC materials and manu-
ally generate a measure of the planned stance of monetary policy and compare that
to actual monetary policy. The method used in this paper does not rely on human

1. The use of context is often motivated by Firth (1957); the specific meaning of a term
is defined by “the company it keeps”.

2. The rate
?
T {N Ñ 0 is for a linear model. For a non-linear model, the required rate

condition is T 5{8{N Ñ 0.
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readings, instead generating a measure of monetary policy from the frequencies of
certain terms in a given context. We compare the impulse responses of interest rates,
inflation and output with our instrument and the Romer and Romer (2004) instru-
ment and find that the sign patterns of our responses better match economic theory,
and the confidence intervals are tighter.

Our second empirical exercise quantifies the effect of fresh news on equity prices.
There is a large literature on the effects of business news on asset prices (Tetlock
(2007), Loughran and McDonald (2011), and Ke, Kelly, and Xiu (2020)), as well as
a number of commercial vendor platforms. Most similar to our application is Ke,
Kelly, and Xiu (2020) (henceforth KKX) who develop a topic model that jointly
models returns and sentiment to find the words that best predict returns. KKX also
investigate the effect on fresh news of equity returns, by developing a measure of
similarity between articles on consecutive days to measure the freshness of news. We
instead condition on the context that terms indicating stale news are not present.
Like KKX, we find that fresh news has a much larger effect on asset returns than
stale news.

The remainder of the paper is as follows. Section 2 outlines the quantitative and text
models. Section 3 demonstrates how the text model can be used to find instruments.
Section 4 discusses estimation and inference. Section 5 presents the first empirical
application, identifying monetary policy shocks using FOMC transcripts. Section 6
presents the second empirical application, quantifying the effect of fresh news on
equity returns. Section 7 concludes. Appendix contains proofs and additional results.

2 Model

Our main econometric specification is a linear model with a single right-hand side
endogenous regressor. This is the typical starting point of much applied work; it
is the linear IV in microeconometrics and Local Projections-IV in macroeconomics
(Stock and Watson 2018).

For t “ 1, . . . , T , denote yt P R as the outcome variable, Yt P R the right-hand side
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endogenous variable and et P R the unobservables. Assume that

yt “ Ytθ0 ` et, (1)

where ErYtets ‰ 0 for t “ 1, . . . , T . We could also include a vector of exogenous
covariates (including a constant), xt P Rdx satisfying Erx1tets “ 0 for t “ 1, . . . , T , in
which case (1) is our specification after partialling out the effect of xt.

Our object of interest is θ0, which cannot consistently be estimated using OLS due
to the endogeneity of Yt. One way to overcome this endogeneity problem is to use
an instrument. We assume the existence of such an exogenous variable z˚t , which
can be used for an instrument; that is z˚t is relevant, Erz˚t Yts ‰ 0 and exogenous,
Erz˚t ets “ 0 for all t “ 1, . . . , T .

The departure from standard IV framework is that z˚t cannot be directly observed.
Instead the instrument z˚t appears as a shifter in a reduced form random utility
model of text generation, that determines the likelihood of each term, conditional
on some observed covariates. The unobserved instrument makes terms more or less
likely to appear in certain ‘contexts’.

2.1 Text Model

At each time period t, there exists a document, each of which contains Nt words,
each denoted as wt,n.3 A word is one of V terms in a vocabulary.4 Note that a word
refers to the index with a document (the choice), whereas term refers to a particular
member of the vocabulary that is chosen (the chosen alternative).

The corpus is modelled as a discrete choice problem, where a speaker chooses a
sequence of terms independently, conditional on covariates. The utility that a speaker
receives from choosing term wt,n, given an information set Ft is

Uwt,n “ x1tγ ` α1,wz
˚
t ` α2,wet ` ξw,t ` εwt,n , (2)

3. If there exist a corpus of documents at time t, these are concatenated into a single
document.

4. A term can be a single term—a unigram—or a combination of n terms—an n-gram.
It is also common to ‘preprocess’ a document to transform it into an ordered collection of
words. For details, see Gentzkow, Kelly, and Taddy (2019).
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where ξw,t reflects exogenous changes in term choice over time and is uncorrelated
with the other variables in the model; that is Erξw,tYts “ 0 and Erξw,tets “ 0 for all
t “ 1, . . . , T . The random utility shock εwt,n is assumed to be Gumbel (appropriately
centred) and is independent across wt,n. This leads to the familiar result from random
utility theory that the probability of choosing term w in document t, conditional on
Ft is

ptpwq :“ P pwt,n|Ftq “
exptx1tγ ` α1,wz

˚
t ` α2,wet ` ξw,tu

řV
w1“1 exptx1tγ ` α1,w1z

˚
t ` α2,w1et ` ξw1,tu

. (3)

The information set at time t, Ft, contains z˚t , et, ξw,t as well as other observable
events that we will refer to as the context.5 These observable events allow us to con-
struct very specific meanings for terms. Recalling our example from the introduction,
context is crucial to finding terms that are exogenous.

In our empirical applications, Sections 5 and 6, the context will be the absence of
certain ‘troublesome’ terms nearby (in our example from the introduction, these
terms where synonyms of ‘inflation’ and ‘output ’). These troublesome terms often
indicate discussion about the confounding unobservables et; so by conditioning on
the absence of these terms, we can find discussion that is free from et. Context
can capture all manner of observable events and thus is very general; we discuss in
Section 6 how article novelty has been used implicitly as context in other work.

3 Valid Instruments

In order to construct valid instruments from the text, we focus our attention on
terms whose variation is driven by the unobserved instrument z˚t , but not by the
confounding latent variables et.

Assumption 1. There exist two terms w1 and w2 such that
1. α1,w ‰ 0 for w “ w1 or w “ w2.
2. α2,w “ 0 for w “ w1 and w “ w2.

Assumption 1.1 states that there exist two terms w1 and w2, such that the likeli-
hood of least one of them is shifted by the unobserved instrument z˚t . Assumption 1.2

5. We use the term context to connect with the NLP and machine learning literatures.
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states that neither the likelihood of w1 nor w2 depends on the confounding unob-
servables et.

Define the log odds ratio of w1 and w2 as

ztpw1, w2q :“ log

ˆ

ptpw1q

ptpw2q

˙

. (4)

Proposition 1. Let w1, w2 satisfy Assumption 1, and α1,w1 ‰ α1,w2 . Then ztpw1, w2q

is an instrument for Yt, for t “ 1, . . . , T .

Proof. See Appendix A.

The frequency of certain terms (as opposed to the log odds ratio of two terms) is often
used in applied economic research that uses text data. Unfortunately, a similar result
to Proposition 1 for conditional choice probabilities in (3), cannot be established
under Assumption 1. As discussed above, the denominator in (3) contains et, which
is not merely an artifact of the logit form of conditional probability, but instead it
represents a tradeoff speakers face when choosing what to say. For example Consider
choosing between two terms, w1 and w2. Suppose that w1 satisfies Assumption 1, it
is relevant, α1,w1 ą 0, and exogenous, α2,w2 “ 0; and w2 is the opposite, α1,w2 “ 0,
α2,w2 ą 0. Suppose that at time t, we have Yt “ 0 and et ă 0. While the utility
from speaking w1 is unaffected by et, the utility from w2 falls. In relative terms, the
speaker gets more utility from uttering w1 and hence ptpw1q is higher. Therefore the
probability of w1 is affected by et, and we fail to satisfy exogeneity.

This suggests that using the exogeneity of the frequency of certain terms may be
difficult to establish. We do show that under considerably stronger assumptions
than those presented in Assumption 1, we can establish a similar result for condi-
tional choice probabilities. The additional results and a discussion is presented in
Appendix G.

The additional condition in statement of Proposition 1, α1,w1 ‰ α1,w2 , ensures that
the likelihood of the two words w1 and w2 are not shifted by z˚t by exactly the same
magnitude. This is a mild condition.
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3.1 Generalized Log Odds

There are many pairs of terms that satisfy Assumption 1. This is particularly true as
there are often synonyms that convey similar meanings in a given context. Similarly,
there are multiple possible configurations of log odds ratios that satisfy Proposition 1
and hence can be used as instruments.6 We consider the following generalization of
the log odds ratio. Define a subset of the vocabulary, J Ď t1, . . . , V u of size J . We
will generalize Assumption 1 for J ą 2.

Assumption 2. Suppose J ą 2, and
1. α1,wj ‰ 0 for at least one j P J .
2. α2,wj “ 0 for all j P J .

Assumption 2.1 states that the likelihood of at least one of terms in J must be
shifted by the unobserved instrument z˚t . Assumption 2.2 states that the likelihood
of all of the terms in J do not depend on the confounding unobservable et

Define the generalized log odds as

ztpJ ,ωq :“
ÿ

jPJ
ωj logpptpwjqq, (5)

where ω “ ω1, . . . , ωJ , ωj P R, is a vector of weights. Note that one can recover the
log odds ratio from (4) by setting ω1 “ 1, ω2 “ ´1 and ωj1 “ 0 for all j1 P J zti, ju.

Proposition 2. Let J ˚ satisfy Assumption 2. For any ω such that
ř

jPJ ˚ ωj “ 0

and
ř

jPJ ˚ ωjα1,wj ‰ 0, ztpJ ˚,ωq is an instrument for Yt for t “ 1, . . . , T .

Proof. See Appendix A.

The additional requirement that
ř

jPJ ˚ ωjα1,wj ‰ 0 is the generalization of the
condition α1,w˚1

‰ α1,w˚2
, in the statement of Proposition 1.

Proposition 2 holds true for any vector of weights ω, such that
ř

jPJ ωj “ 0,
ztpJ ˚,ωq. While these weights can be chosen by the econometrician, we can find
the optimal weights (in the sense of minimizing asymptotic variance), by using two

6. For example ztpw1, w2q and ztpw2, w1q both satisfy Assumption 1 and are valid instru-
ments.
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stage least squares. In particular if we include in the first stage ztpwj , wJq for
j “ 1, . . . , J ´ 1, the optimal weights are just the first stage regression coefficients.
The optimality of these weights follows from the classic result of the asymptotic
efficiency of 2SLS in the class of IV estimators (Wooldridge 2010)[p. 102].

This procedure will yield the same asymptotic variance as including all possible
combinations of log odds ratios of terms in J ˚ in the first stage. However, the
number of instruments in this case would be all possible permutations of terms in
J ˚, which is pJ ´ 1q!, which quickly becomes infeasible for even modest J .

4 Estimation and Inference

In this section, we will discuss our estimation procedure. At each time t, we estimate
the generalized log odds using the corpus of documents published at that time. This
estimator will be used as a plug-in for instruments in the second stage. We will show
that under an assumption about size of documents relative to the time dimension,
we do not have to adjust our inference for the generated instruments. Throughout
this section we will use the notation N “ mintNt.

Given a collection of terms J and weights ω, the generalized log odds estimator at
time t is

ẑtpJ ,ωq “
ÿ

jPJ
ωj log

˜

1

Nt

Nt
ÿ

w“1

1wt,n“wj

¸

. (6)

This estimator is consistent and asymptotically normal.7

Define the maximum weight given to a log conditional probability as ωM “ maxjPJ ωj ,
and define L as the lower bound of the conditional probabilities on all j P J .8 We
have the following large deviation bound for our generalized log odds estimator.

Proposition 3. For any J and ω, such that ωM ă 8,

1. P psupt|ẑtpJ ,ωq ´ ztpJ ,ωq| ą εq ď T2 exp

ˆ

´2N
´

εL
J |ωM |

¯2
˙

.

7. See Appendix F.
8. Formally, L ě 0 is such that L ă minjPJ tppwjqu. Given that the conditional proba-

bilities are derived from a logit discrete choice model in (3), L ą 0.
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2. supt|ẑtpJ ,ωq ´ ztpJ ,ωq| “ Op

´

a

logpT q{N
¯

.

Proof. See Appendix B.

Estimation of the outcome equation (1) is complicated by the fact that we only have
an estimate of our instruments ẑt. If we were to observe zt, then we could use the
infeasible 2SLS estimator

θ̂pztq “ pY
1PZY q

´1Y 1PZy, (7)

where the dependence on the instruments zt has been made explicit. The infeasible
2SLS estimator is consistent and asymptotically normal9 with variance

V pθ̂pztqq “ pQY zQ
´1
zz QzY q

´1QY zQ
´1
zz ΩQ´1

zz QzY pQY zQ
´1
zz QzY q

´1, (8)

where QY z “ T´1
řT
t“1 ErYtz1ts, Qzz “ T´1

řT
t“1 Erztz1ts and

Ω “
1

T

T
ÿ

t“1

Ere2
t ztz

1
ts `

1

T

T´1
ÿ

τ“1

T
ÿ

t“τ`1

Eretet´τ pztz1t´τ ` zt´τz1tqs.

We do not observe the actual value of the instruments, but instead only an estima-
tor of them, ẑt, estimated independently at each time period t. The feasible 2SLS
estimator is

θ̂pẑtq “ pY
1PẐY q

´1Y 1PẐy,

where Ẑ is the matrix of instruments with ẑt instead of zt.

In order to estimate θ̂pẑtq, we will place minimal assumptions on the DGP. Denote
a sequence of random variables tXt, t P Zu on a given probability space pΩ,F , P q
and let Fba be the σ-algebra of events generated by pXa, Xa`1, . . . , Xbq. Define the
strong mixing coefficient

αpmq “ sup
T

sup
FPFT

´8,GPF8T`m

|P pF XGq ´ P pF qP pGq|.

A sequence for which αpmq Ñ 0 as mÑ8 is called strong or α-mixing (Rosenblatt

9. This result follows from steps 2-4 of the proof of Theorem 1.
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(1956)). Mixing processes allow considerable dependence and heterogeneity, but are
sufficiently well behaved that they admit laws of large numbers and central limit
theorems.

We will adapt the conditions and proof concepts of Domowitz (1982) to the 2SLS
case, and include additional assumptions to ensure that first estimation of instru-
ments does not distort second stage inference.

Assumption 3.
1. The random sequence tYt, et, z˚t , ξtu is α-mixing with αpmq “ Opm´λq, λ ą

2pr ` δq{pr ` δ ´ 1q, for positive constants r ą 1 and 0 ă δ ď r.
2. For all t “ 1, . . . , T

• Er|pz˚t q3|r`δs ă 8,
• Er|ξ3

wj ,t|
r`δs ă 8 for all j P t1, . . . , Ju,

• Er|Y 3
t |r`δs ă 8,

• Er|e3
t |r`δs ă 8.

3. The average moment matrix Qzz “
1
T

řT
t“1 Erztz1ts is such that detpQzzq ą 0

for sufficiently large T .
4. Er|z˚t et|2pr`δqs ă 8 and Er|ξwj ,tet|2pr`δqs ă 8, for all t “ 1, . . . , T and j P

t1, . . . , Ju.
5. Define Ωa,m “ varpT´1{2

řa`m
t“a`1 ztetq. There exists a matrix Ω such that

detpΩq ą 0 and λ1Ωa,mλ ´ λ1Ωλ Ñ 0 and m Ñ 8 uniformly in a for any
nonzero J ´ 1 vector λ.

6. For all t “ 1, . . . , T

• Er|pz˚t q2e2
t |r`δs ă 8,

• Er|ξ2
wj ,te

2
t |r`δs ă 8 for all j P t1, . . . , Ju.

Assumption 3 are standard requirements to invoke the WLLN and CLT for α-mixing
random variables in order to show consistency, asymptotic normality and the con-
sistency of the HAC covariance estimator.

Theorem 1. Let Assumption 3 hold,
a

logpT q{N Ñ 0, and let J ˚ satisfy Assump-
tion 2. For any ω such that

ř

jPJ ωj “ 0, we have

?
T pθ̂pẑtpJ ˚,ωqq ´ θ0q

d
Ñ Np0,V pθ̂pztqqq.

Additionally if l Ñ 8 as T Ñ 8, such that l “ OpT γq, 0 ă γ ă δ{pr ` δq, then
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V pθ̂pztqq can be consistently estimated by

V̂ pθpẑtqq “ pY
1PẐY q

´1Y 1PẐΩ̂pẑtqPẐY pY
1PẐY q

´1

where

Ω̂pẑtq “
1

T

T
ÿ

t“1

ê2
t ẑtẑ

1
t `

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

êtêt´τ pẑtẑ
1
t´τ ` ẑt´τ ẑ

1
tq.

Proof. See Appendix B.

The rate assumption in Theorem 1,
a

logpT q{N Ñ 0, requires that T not grow too
quickly relative to N . In situations where the text is a corpus of policy documents,
like in Section 5, this is easily satisfied as the size of these documents, N tends to
be large and macro time series, T tend to be small. In situations where the text are
newspaper articles, N tends to be shorter and T larger. However, T would still need
to be much larger than N for our rate assumption to not be satisfied.

A popular source of text data is Twitter, where by design tweets are limited to 280

characters.10 In this setting, we imagine documents growing large by the number of
tweets at a given time t becoming large, and documents being formed by concate-
nating these tweets together.

Typically, we would need to adjust the variance of our estimator to account for the
presence of generated regressors (Pagan 1984; Murphy and Topel 1985). When the
generated regressors are instruments (as opposed to covariates) under the stronger
assumption that Eret|z˚t s “ 0, one can ignore first stage estimation (Wooldridge
2010)[p. 139]. This occurs when the generated instrument has the same index as the
second stage estimation (i.e. not a panel structure), and the first estimation involves
estimating a finite dimensional parameter. Our setting differs in that the generated
instruments are estimated using cross sectional data (documents), independently at
each time t, with the weaker assumption that Eretz˚t s “ 0 for all t “ 1, . . . , T . This
comes at the cost of requiring

a

logpT q{N Ñ 0.

The results of this section and Section 3 suggest a straightforward estimation pro-

10. This is true as of August 2020. The original character limit on tweets was 140, based
on the 160 character limit of SMS. The limit was modified to 280 characters in 2017.
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cedure. Instruments can be estimated using only conditional frequencies, and the
optimal generalized log odds ratio can be estimated using 2SLS. In addition, con-
ventional variances and their estimators can be used without requiring adjustment.

4.1 Monte Carlo Simulations

In this section, we will present Monte Carlo simulations to investigate the finite sam-
ple properties of our estimator. We estimate the outcome equation with an intercept
and the endogenous variable, with parameters θ0 “ r1, 2s and the endogenous vari-
able is generated by a first stage Yt “ r1, γsr1, z˚t s1`νt, with γ “ 2 and z˚t „ Np1, 1q.
pet, νtq

1 are distributed normally mean 0, unit variance and correlation 0.75.

As for the text model for each term w, ξ˚w,t „ Np0, 1q, α1,w and α2,w are standard
normal. For terms that will be used in the construction of our Erα1,ws “ 2, so that
they appear sufficiently often, and α2,w “ 0, so that they are exogenous.

We perform 1, 000 Monte Carlo repetitions, and set the user defined parameters
similar to our main empirical application, identifying monetary policy shocks; the
size of the vocabulary is 13, 000 and we use 10 terms in the construction of our
instrument. We report 4 statistics, Rate “

a

logpT q{N , the bias of θ̂, the MSE and
the 95% coverage rate. We use three different values of N “ 800, 10, 000, 26, 000

and three different values of T “ 100, 750, 1, 500, for 9 total combinations. The
results are reported in Table 1.

The results are in line with our theory. As the Rate “
a

logpT q{N decreases (the
lower rows of the table), the bias and MSE decrease. 95% coverage tends to decrease
slightly, however.

5 Monetary Policy Shocks

In this section, we will present our first empirical application, identifying monetary
policy shocks in a Local Projections IV model, using instruments derived from FOMC
meeting transcripts.

Our objects of interest are the responses of inflation, output and interest rates to

15



Ta
bl
e
1:

M
on

te
C
ar
lo

R
es
ul
ts

T
“

10
0

T
“

75
0

T
“

15
00

N
R
at
e

B
ia
s

M
SE

C
ov

R
at
e

B
ia
s

M
SE

C
ov

R
at
e

B
ia
s

M
SE

C
ov

80
0

0.
07

59
0.
01

45
0.
00

39
0.
95

60
0.
09

10
-0
.0
10

9
0.
00

08
0.
98
30

0.
09

56
-0
.0
05

1
0.
00

03
0.
95
70

10
00

0
0.
02

15
0.
02

89
0.
00

49
0.
91

60
0.
02

57
0.
00

62
0.
00

06
0.
94

00
0.
02

70
0.
00

09
0.
00

04
0.
95

60
26

00
0

0.
01

33
0.
02

21
0.
00

38
0.
91

70
0.
01

60
0.
00

52
0.
00

10
0.
92

30
0.
01

68
0.
00

24
0.
00

03
0.
93

40
E
ac
h
si
m
ul
at
io
n
in
vo
lv
es

1
,0

00
M
on

te
C
ar
lo

re
pe

ti
ti
on

s,
on

a
co
rp
us

w
it
h
a
vo

ca
bu

la
ry

of
13
,0

00
te
rm

s.
50

te
rm

s
ar
e

us
ed

in
th
e
co
ns
tr
uc
ti
on

of
ou

r
in
st
ru
m
en
t.

‘R
at
e’
“

a

lo
g
pT
q{
N
,
‘B
ia
s’

is
th
e
sa
m
pl
e
av
er
ag

e
of
θ̂
m
in
us

θ 0
,
‘M

SE
’
is

M
ea
n
Sq

ua
re
d
E
rr
or
,a

nd
‘C

ov
’i
s
th
e
95

%
co
ve
ra
ge

ra
te
.

16



a unit contractionary monetary policy shock. We assume that the other structural
shocks in the model are an inflation shock and an output shock. We will consider a
system of three macroeconomic variables, the Federal Funds rate (it), GDP Deflator
ppt) and GDP (gdpt)—which will we collect as yt “ rit, pt, gdpts1—and three struc-
tural macroeconomic shocks, a monetary policy shock (ε1,t), an inflation (ε2,tq and
an output shock (ε3,tq.

We will write this system as a series of local projections,

yi,t`h “ θh,i1y1,t ` u
h
i,t`h, (9)

where uhi,t`h “
řh
j“´8 ε1,t`j ` ε2,t`j ` ε3,t`j ´ ε1,t and θh,i1 is the h period ahead

impulse response of yi to an increase in interest rates by 1 unit. Our objects of
interest are θh,i1 for h “ 0, . . . ,H and i “ 1, 2, 3. We cannot consistently estimate
θh,i1 by using OLS, as y1,t is correlated with uhi,t`h, and is thus endogenous.

A solution to this problem is to use Local Projection IV (LP-IV), in which we find
an instrument for y1,t. We will do so by using transcripts from the FOMC meetings.

5.1 Data

The text data are the transcripts of the FOMC meetings from March 29, 1976 to
December 17, 1996.11 We focus on this time period for a number of reasons. First,
full transcripts of the meeting do not exist prior to March 29 1976, only minutes of
the meetings. Secondly, we wish to compare our monetary policy shock series with
the series of Romer and Romer (2004), which end in 1996. Finally, there are large
changes in communication in FOMC meeting due to a change in transparency that
occurred in 1993 (see Egesdal, Gill, and Rotemberg (2015) and Hansen, McMahon,
and Prat (2018)). There are a total of 182 meetings within this time period. The
macroeconomic data is quarterly, so we concatenate all meeting transcripts within a
quarter, resulting in a total of 84 documents.12

We perform the following preprocessing steps. First, we separate the spoken text
from the name of the speaker, to create a labelled set of ‘interjections’, of which there

11. The transcripts can be obtained directly from the Federal Reserve website.
12. The FRED codes for it, pt and gdpt are respectively GDPDEF, GDP, and DFF.
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are 85, 414 in the entire sample, and an average of 1, 017 interjections per document.
We then perform a number of standard ‘preprocessing’ steps. We transform the
interjections into lower case and remove punctuation and strings that consist solely
of numbers. Next we remove stop words, commonly used terms (such as ‘the’,
‘a’, ‘an’) which do not contribute to a document meaning, and finally stem the
terms (replacing terms with their ‘root’, e.g. ‘accounts’, and ‘accounting ’ become
‘account ’).13 This gives us an average word count per document of 26, 100, and a
total vocabulary of 13, 344 terms.

5.2 Identification

In order to construct an instrument using the generalized log odds, we need to find
a set of terms in a shared context that are relevant to monetary policy shock, but
exogenous to the output and inflation shocks.

If we were to look for terms unconditionally, this would be a difficult task. For
example consider a term like ‘monetary policy ’. Clearly this term will be relevant
to the monetary policy shock, but it is unlikely that, unconditionally, this term
will be exogenous to the nuisance shocks. Consider the interest rate equation from
(9); interest rates respond not only to monetary policy shocks, but the output and
inflation shocks as well (this is rationalized by a Taylor rule). Therefore, if there is
an inflation or an output shock, we would expect the central bank to adjust interest
rates in response. Importantly we would expect that the FOMC members would
be discussing ‘monetary policy ’ in response to these confounding shocks. Hence
discussion about ‘monetary policy ’ varies with both inflation and output shocks, and
the frequency of the term ‘monetary policy ’ would not be exogenous.

However by leveraging the idea of a context, we can construct instruments that are
exogenous. In particular, the context we consider is that synonyms of ‘output ’ and
‘inflation’ are not mentioned within that interjection, and the relevant set of terms
are those synonyms of ‘monetary policy ’. The key identifying assumption is that if
policy makers are discussing ‘monetary policy ’ (or terms like it), but not discussing
‘inflation’ or ‘output ’, this is indicative of the monetary policy shock, but not on an

13. We use the stop word list from the popular python package nltk and well as its
implementation of the Porter stemmer (Porter (1980)).
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inflation or output shock.

In order to properly specify our context and our set of instrument terms J ˚, we
will formalize the construction of the terms above. We could use synonyms for the
terms ‘monetary policy ’, ‘output ’ and ‘inflation’, by using a thesaurus (Hale (1998))
or WordNet (Miller et al. (1990), Resnik (1995), and Miller (1995)). Instead, we
will use an approach similar to Egesdal, Gill, and Rotemberg (2015) (henceforth
EGR), who use the Oxford Dictionary of Economics (Hashimzade, Myles, and Black
(2017)), denoted ODE, in order to measure the similarity between different terms. As
a technical dictionary the ODE can be used to construct a more precise measurement
of the similarity between terms used in the FOMC transcripts. The ODE contains
3, 614 terms, which after preprocessing results in 3, 535 unique stems.14 Of these
terms, 1, 524 appear in the FOMC transcripts.

To measure the similarity between terms in the ODE, EGR compute the pairwise
cosine similarity between each term’s definition. The cosine similarity is a useful
tool, because it is easy to compute and satisfies a number of desirable axioms that
one would like a similarity metric to satisfy.15 However, it cannot easily distinguish
between sentences that have similar meanings but different terms. The canonical
example are the following two sentences “Obama speaks to the media in Illinois” and
“The President greets the press in Chicago”, which while conveying almost the same
meaning, have no terms in common and thus would have a cosine similarity of zero.

Instead, we use the Word Mover’s Distance (Kusner et al. (2015)), denoted WMD,
to measure the similarity of term’s definitions in the ODE. The WMD relies on ‘word
embeddings’ (techniques to embed documents in low dimensional vector space), and
is defined as the ‘cost’ to transform one document into another.16

14. For example ‘account(s)’ and ‘accounting ’ both have the stem ‘account ’. To break
these ties, we keep the definition that has the highest similarity with either of ‘monetary
policy ’, ‘output ’ and ‘inflation’.
15. EGR show that the ‘generalized cosine similarity’ satisfies five desirable axioms: addi-

tion, monotonicity, synonym invariance, within-word similarity, cross-word similarity. The
‘vanilla’ cosine similarity satisfies all axioms other than cross-words similarity and synonym
invariance. The generalized cosine similarity is not appropriate for this exercise as it requires
nonnegative, positive definite weighting matrix to weight the similarity between documents.
In their exercise, they construct this weighting matrix from the ODE, which is exactly the
exercise we are trying to accomplish. See Section 3 of EGR.
16. Details on Cosine Similarity and WMD are provided in Appendix D.
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We compute the pairwise WMD between the definitions of all terms in the dictio-
nary (that are present in the FOMC transcripts) and the definitions of the three
terms, ‘monetary policy ’, ‘output ’ and ‘inflation’.17 We rank the WMD, and choose
terms with the lowest WMD as the synonyms for ‘monetary policy ’, ‘output ’ and
‘inflation’. It is possible for there to be overlap between terms that are synonyms
for ‘monetary policy ’ and ‘output ’ or ‘inflation’. These terms are clearly not suit-
able as instruments, and we remove these terms until we have a sufficient number of
terms. We chose to use 50 synonyms of ‘output ’ and ‘inflation’, and 10 synonyms of
‘monetary policy ’. The higher number of synonyms for ‘output ’ and ‘inflation’ are
to ensure that our instruments are in fact exogenous.

These synonyms are plotted in a wordcloud in Figure 1, and are also listed in Ap-
pendix D.1. The size of the terms in the wordcloud are inversely proportion to their
WMD to either ‘monetary policy ’ (top), ‘output ’ (middle) or ‘inflation’ (bottom).

Therefore our instrument is constructed in the following way: J ˚ is the set of syn-
onyms of ‘monetary policy ’, and the context is none of the set of synonyms of ‘infla-
tion’ or ‘output ’ appear within the same interjection. 73, 114 or 86% of the interjec-
tions satisfy our context. 3, 368 (4%) of interjections both satisfy our context and
contain a synonym of ‘monetary policy ’.18

5.3 Results

We estimate the LP-IV model and compute impulse responses up to 12 quarters
after impact. The results are presented in Figure 2.

The responses of interest rates, inflation and output demonstrate their expected
sign patterns, with interest rates increasing on impact, then gradually declining
and inflation and output falling on impact, and gradually returning to baseline.
Our impulse responses do not exhibit the prize puzzle, an an unexpected monetary

17. Because we will be looking at the frequencies of synonyms of ‘monetary policy ’ in
interjections that do not contain synonyms for ‘output ’ or ‘inflation’, this may result in
terms with zero frequency in the entire corpus. This occurs when a ‘monetary policy ’
appears in the transcript, but only in interjections that contain ‘bad’ synonyms. We remove
these terms.
18. To handle situations where frequencies of terms are zero, and the logpptpwqq is unde-

fined, we smooth the multinominal frequencies. See Appendix E for details.
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Figure 1: Synonyms for ‘monetary policy ’ (top), ‘inflation’ (middle) and ‘out-
put ’ (bottom). The size of terms is inversely related to the WMD between a
term and it’s target.
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using generalized log odds ratio. Horizon is quarters. Shaded area represents
the 95% confidence interval.
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tightening often leads to a counter intuitive increase in inflation (Sims (1986)). We
can compare these impulse responses to those identified using the Romer and Romer
(2004) monetary policy shock series, presented in Figure 3 in Appendix C.19

We do note that both inflation and output fall on impact before gradually increasing,
indicating a very quick adjustment of these macro to the monetary policy shock. We
would except the response of inflation and output to be less stark and more gradual.
This is likely due to the simplicity of the model, both in terms of only having 3
variables and very limited dynamics. This is an area for future work.

6 Effect of News on Equity Returns

In this section, we will present our second empirical application quantifying the effect
of contemporaneous or ‘fresh’ news on equity returns.

Denote yt as the return of a company at date t, xt a vector of covariates, and Yt as
the ‘sentiment’ of newspaper articles about the company published at time t. The
model is identical to (1) (with covariates added)

yt “ x1tβ0 ` θ0Yt ` et.

The use of sentiment as a measure of news is standard in the literature, dating back
to the seminal work of Tetlock (2007). However, it is difficult to use sentiment to
estimate the causal effect of fresh news on equity prices, θ0, as Yt is endogenous, due
to the effect of ‘stale’ news. The sentiment of articles about a company published
at time t captures discussion about current events, but also captures news events
that have happened in the past, which we define as ‘stale’. Information is known to
disseminate through the market slowly, and hence the return at time t depends not
only on fresh news, but also on stale news, which is captured in et. Hence Yt and et
are correlated.

To solve this endogeneity problem, we will construct an instrument from the frequen-
cies of ‘sentiment-charged terms’ by conditioning on the context that ‘discussions of
the past’ do not appear in the same article. We will expand on this in Section 6.2.

19. A comparison of our text instrument and the Romer and Romer (2004) monetary
policy shock series is presented in Figure 4 in Appendix C.
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6.1 Data

The data set is a corpus of financial and economic news extracted from Reuters,
used in Ding et al. (2014). It spans from 20 October 2006 to 19 November 2013,
with the number of articles totalling 105, 375. First, we remove a small number
of articles with blank text, and then match the articles with the ‘main’ firm of
interest. We identify the main firm of interest, by extracting identifiers from the
url of the articles and matching them.20 We extract any company that has at least
100 occurrences of an identifier (note that some companies have multiple identifiers,
“boeing” and “dreamliner” or “apple” and “iphone”, which we combine), leaving a
total of 86 companies. We further remove articles that have more than one company
identifier. The total number of articles that can be matched uniquely to a single
firm is 25, 852.

We concatenate all articles posted about a firm at time t and match these docu-
ments with the firm’s adjusted close-to-close returns posted at time t, retrieved from
CRSP.21 Articles posted on weekends and trading holidays are attributed to the
next closest trading day. Some companies have news articles posted about them but
do not have returns associated with the date, as the stock has been removed from
trading (for example due to bankruptcy, of which there were several during this time
period); these articles are dropped from the sample. After dropping these articles
and concatenating articles into documents, the total number of document-return
pairs in our sample is 14, 593.

6.2 Identification and Results

Our endogenous measure of the sentiment of an article is the fitted ‘sentiment score’
of KKX, a measure from 0 to 1, where a sentiment score of 1 indicates that an

20. For example, the article hosted at https://www.reuters.com/article/
us-energy-bp-idUSWLA488420061024, we identify using “us-energy-bp”, simplifying
to “bp”.
21. This differs from the strategy of KKX, who match articles posted on day t with a

companies three day returns from market close on day t ´ 2 to market close on day t ` 1.
They follow this strategy because they do not know the timing by which new information
is impounded in prices: if prices adjust slowly to news it makes sense to align with future
returns, and if articles are a restatement of past news it makes sense to align with past
returns.

24

https://www.reuters.com/article/us-energy-bp-idUSWLA488420061024
https://www.reuters.com/article/us-energy-bp-idUSWLA488420061024


Positive Negative
Word Score Word Score
undervalue 0.596 shortfall 0.323
repurchase 0.573 downgrade 0.382
surpass 0.554 disappointing 0.392
upgrade 0.551 tumble 0.402
rally 0.548 blame 0.414
surge 0.547 hurt 0.414
treasury 0.543 plummet 0.423
customary 0.539 auditor 0.424
imbalance 0.538 plunge 0.429
jump 0.538 waiver 0.429

Table 2: Top 10 positive and negative sentiment-charged terms from KKX
Table A2. The full list of top 50 50 top positive and negative sentiment-
charged is presented in Tables 4 and 5 in Appendix C.

article has maximally positive sentiment and a sentiment score of 0 is maximally
negative. To construct this sentiment score, they use a supervised learning framework
to identify which terms are most predictive of returns—which they label ‘sentiment-
charged terms—and they also compute the term’s weight. These are split into two
categories, positive and negative sentiment terms depending on whether the term
increases or decreases a company return. They report 50 terms in each category.
The measure of sentiment that we use, for a particular company in document t, is
the weighted sum of the frequency of these highly charged sentiment terms, using
KKX weights.22 The 10 top positive and negative sentiment-charged terms are
presented in Table 2.23

Our instrument will be the generalized log odds ratio of the conditional probabilities
of the same sentiment-charged terms, where the context we condition on is that
the terms ‘yesterday ’, ‘last week ’ ,‘day before yesterday ’, ‘in a row ’, and the three
weekdays prior to the article do not occur within that article.24 Of the total 25, 852

22. We do standard processing on the documents to identify the frequencies of these highly
charged sentiment terms. This includes: removing punctuation and whitespace, converting
to lower case, using the Miller (1995) lemmatizer and the Porter (1980) stemmer from the
NTLK Python package.
23. The full list of the 50 top positive and negative sentiment-charged terms are presented

in Tables 4 and 5 in Appendix C.
24. For example if the article was posted on a Thursday, the three prior weekdays would
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articles in the sample, 16, 159 or 62.5% of articles satisfy this particular context.

Table 3 presents results of our regressions. In the first two columns, we present the
reduced form regression of equity returns against the KKX sentiment score, without
company fixed effects in the first column and with company fixed effects in the second
column. The coefficient on sentiment can be interpreted as the effect on the return
of an equity due to an article changing from maximally negative (a sentiment value
of 0) to maximally positive (a sentiment value of 1). In this specification, we cannot
distinguish between news that is fresh and news that stale news.

The third and fourth columns present the IV regression, with our generalized log
odds as an instrument, without and with company fixed effect respectively. We
can interpret the coefficient on sentiment as the effect on equity from a change in
sentiment, when we are only considering fresh news. Importantly, we find a much
larger effect of news on equity returns when considering only fresh news as opposed
to fresh and stale news.

Table 3: The Effect of Fresh News on Returns

Reduced Form IV
No FE FE No FE FE

Sentiment 0.507˚˚˚ 0.574˚˚˚ 0.999˚˚˚ 1.145˚˚˚
(0.105) (0.0975) (0.288) (0.314)

F - First stage 40.02 38.16
Observations 14593 14593 14593 14593

The effect of fresh news on equity returns. The ‘Reduced
Form’ columns are the reduced form regression of a com-
pany’s equity returns on KKX sentiment score, without and
with company fixed effects respectively. The ‘IV’ columns
are the instrumental variables regression, where the instru-
ment is our generalized log odds ratio of positive and nega-
tive sentiment-charged terms in the context that no discus-
sion of past events has occurred within the article. Standard
errors clustered at the company level are reported in paren-
thesis. Significance denoted as * p < 0.1, ** p < 0.05, ***
p < 0.01.

be ‘Monday ’, ‘Tuesday ’, ‘Wednesday ’.
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Our results are very closely in line to those of KKX, despite using a different iden-
tification scheme and smaller data set with less frequent reporting. KKX find that
the effect of fresh news on returns is 70% larger than stale news, whereas we find
that the effect of fresh news is 100% larger than fresh and stale news combined in
the FE specification.

Our approach complements the work of KKX who distinguish between fresh and
stale news by computing article novelty. They define Article novelty as the maximum
cosine similarly between an article at time t and any article published about the same
firm within the last 5 trading days. They classify articles as fresh news if they have a
sufficiently high article novelty (they are sufficiently dissimilar to all articles within
the last 5 days) and stale news otherwise. Through the lens of our text model, this
is similar to defining the context as article novelty being above a certain threshold.

We instead condition on observables within the same article (instead of articles
within the last 5 days). This is useful when the corpus is less comprehensive.25

Their context will capture fresh news when the news is reported often, whereas we
can still identify fresh news even when reporting is more sporadic. On the other
hand, our context depends on a dictionary of past tense terms and may misclassify
stale news as fresh, if none of our pre-specified ‘past tense terms’ are present, but
the article is similar to previous articles within the last 5 days. In these situations,
the KKX novelty measure may perform better.26

Our context can be generalized to identify a particular topic of news, beyond simply
fresh and stale news. For example if we were interested in news related to climate
change risk (like in Engle et al. (2019)), but not related to policy uncertainty (like in
Baker, Bloom, and Davis (2016)), one could use as instruments terms like ‘weather ’
and as a context that terms like ‘Federal Reserve’ do not appear in the same article.
Traditional topic models (Hansen, McMahon, and Prat (2018) and Ke, Olea, and
Nesbit (2020)) can be used to find relevant topics, but struggle to identify exogenous
topics. Our model can handle both relevance and exogeneity, but the terms defining
topics need to generated by the researcher.

25. KKX use the Dow Jones Newswire corpus which contains 10, 364, 18 articles, whereas
we only have access to 105, 375 articles.
26. In particular one could improve upon the KKX novelty measure by using the Word

Mover’s distance as a measure of article novelty. See Section 5.2 and Appendix D for
discussion.
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7 Conclusion

This paper presents a theoretical framework that formalizes an explicit link between
text data and unobservables in a quantitative econometric model. Our model of
text highlights that finding terms in the text that can be used as instruments is
challenging, but offers a path forward by conditioning on particular contexts.

The paper uses the model to provide several new insights about constructing instru-
ments using text data. First, we show that under weak conditions, the generalized
log odds of certain terms in the appropriate context can be used as an instrument.
Additionally the probabilities of terms (as opposed to the log odds), which have been
used in the literature, require much stronger assumptions to be used as instruments.

Estimation is a two step estimation procedure, we first estimate the instruments, then
use them as plug-in estimators. We provide bounds on the worst case estimation
error of the generalized logs odds ratio, and use this to show that the estimation of
the instruments in the first stage does not affect inference in the second stage when
a

logpT q{N Ñ 0. Instruments can be computed using conditional frequencies, and
simply running 2SLS, without the need to adjust HAC covariance estimators.

We present two empirical applications. The first to identify a monetary policy shock
using the FOMC transcripts. We find that our impulse responses do not suffer from
the price puzzle, have the sign patterns that theory would suggest and have tight
confidence intervals compared to alternatives. The second application quantifies the
effect of fresh news on equity returns. We find that by controlling for the effect of
stale news, the effect of news on equity returns is far larger.

There remain interesting avenues for future research. The text model we develop
captures that text and data are jointly determined and that the data affects the
text and vice versa, but it is not a structural model of text generation. Formally
modelling the choice problem that agents face in communicating would allow a better
understanding of how agents respond to unobservables. Additionally, the contexts
that we use in applications are related to absence of certain terms nearby. We feel
this is only scratching the surface of the possible contexts that could be useful in
economic research.
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Appendix

A Proofs in Section 3

Proof of Proposition 1

Proof. Under Assumption 1

ztpw1, w2q “ z˚t pα1,w1 ´ α1,w2q ` pξw1,t ´ ξw2,tq. (10)

We need to show that ztpw1, w2q satisfies the conditions to be an instrument: it is
relevant, Erztpw1, w2qYts ‰ 0 and exogenous, Erztpw1, w2qets “ 0, for t “ 1, . . . , T .

Relevance: For t “ 1, . . . , T

Erztpw1, w2qYts “ Erpztpα1,w1 ´ α1,w2q ` pξw1,t ´ ξw2,tqqYts

“ Erz˚t Ytspα1,w1 ´ α1,w2q ` Erξw1,tYts ´ Erξw2,tYts

“ Erz˚t Ytspα1,w1 ´ α1,w2q

(by assumption Erξw,tYts “ 0 for all w).

By assumption z˚t can be used as an instrument for Yt, hence Erz˚t Yts ‰ 0 . Also
pα1,w1 ´ α1,w2q ‰ 0 by assumption. Together these imply Erztpw1, w2qYts ‰ 0.

Exogeneity: For t “ 1, . . . , T

Erztpw1, w2qets “ Erpz˚t pα1,w1 ´ α1,w2q ` pξw1,t ´ ξw2,tqqets

“ Erz˚t etspα1,w1 ´ α1,w2q ` Erξw1,tets ´ Erξw2,tets

“ Erz˚t etspα1,w1 ´ α1,w2q

(by assumption Erξw,tets “ 0 for all w).

Once again by assumption z˚t can be used as an instrument for Yt and hence Erz˚t ets “
0. This implies Erztpw1, w2qets “ 0.
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Proof of Proposition 2

Proof. Let ω be such that
ř

jPJ ωj “ 0. We can write the generalized log odds as

ztpJ ,ωq “
ÿ

jPJ
ωjuwj

“ z˚t
ÿ

jPJ
ωjα1,wj `

ÿ

jPJ
ωjξwj ,t

The proof will follow the same strategy of the proof of Proposition 1. We need
to show that ztpJ ˚,ωq satisfies the conditions to be an instrument: it is relevant,
ErztpJ ˚,ωqYts ‰ 0 and exogenous ErztpJ ˚,ωqets “ 0, for t “ 1, . . . , T .

Relevance: For t “ 1, . . . , T

ErztpJ ˚,ωqYts “ E

»

–

¨

˝z˚t
ÿ

jPJ ˚
ωjα1,wj `

ÿ

jPJ ˚
ωjξwj ,t

˛

‚Yt

fi

fl

“ Erz˚t Yts
ÿ

jPJ ˚
ωjα1,wj `

ÿ

jPJ ˚
ωjErξwj ,tYts

“ Erz˚t Yts
ÿ

jPJ ˚
ωjα1,wj

(by assumption Erξw,tYts “ 0 for all w).

By assumption z˚t can be used as an instrument for Yt, hence Erz˚t Yts ‰ 0. Also
ř

jPJ ˚ ωjα1,wj ‰ 0 by assumption. Together these imply ErztpJ ˚,ωqYts ‰ 0.

Exogeneity: For t “ 1, . . . , T

ErztpJ ˚,ωqets “ E

»

–

¨

˝z˚t
ÿ

jPJ ˚
ωjα1,wj `

ÿ

jPJ ˚
ωjξwj ,t

˛

‚et

fi

fl

“ Erz˚t ets
ÿ

jPJ ˚
ωjα1,wj `

ÿ

jPJ ˚
ωjErξwj ,tets

“ Erz˚t ets
ÿ

jPJ ˚
ωjα1,wj

(by assumption Erξw,tYts “ 0 for all w).

Once again by assumption z˚t can be used as an instrument for Yt and hence Erz˚t ets “
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0. This implies ErztpJ ˚,ωqets “ 0.
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B Proofs in Section 4

Proof of Proposition 3

We will first establish a number of lemmas.

Lemma 1. Let p be a vector of multinational probabilities, such that
řV
j“1 ppwjq “

1 and let p̂ be the natural estimator. Then P psupj |p̂pwjq´ppwjq| ą αq ď 2 exp
`

´2Nα2
˘

.
This also holds for any subvector of p.

Proof. supj |p̂pwjq ´ ppwjq| has the bounded differences property. Recall that each
wt,n is a one-hot vector of size V . The ith element of wt,n is either 0 or 1, and
can change by at most 1 in absolute value. Therefore |p̂j ´ pj | changes by at most
cn “ 1{N for any j. Therefore using the bounded difference inequality

P

˜

sup
j
|p̂pwjq ´ ppwjq| ą α

¸

ď exp

˜

2α2

řN
i“n c

2
n

¸

“ exp

˜

2α2

řN
i“np1{Nq

2

¸

“ 2 exp
`

´2Nα2
˘

.

Lemma 2. Let logpxq have domain D “ rL,8q, then

| logpxq ´ logpyq| ď
1

L
|x´ y|,

for all x, y P D.

Proof. Assume without loss of generality that 0 ă L ď x ď y. Then

| logpxq ´ logpyq| “ logpy{xq

“ logp1` py{x´ 1q

ď y{x´ 1

(as logp1` uq ď u for all u ą ´1),
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“ 1{xpy ´ xq

ď
1

L
py ´ xq

(as L ď x by assumption),

“
1

L
|y ´ x|.

Lemma 3. Recall ztpJ ,ωq “
ř

jPJ ωj logpp̂tpwjqq. Then for each t “ 1, . . . , T

P p|ẑtpJ ,ωq ´ ztpJ ,ωq| ą εq ď 2 exp

˜

´2N

ˆ

εL

JωM

˙2
¸

.

Proof.

P p|ẑtpJ ,ωq ´ ztpJ ,ωq| ą εq “ P

˜

|
ÿ

jPJ
ωj logpp̂tpwjqq ´

ÿ

jPJ
ωj logpptpwjqq| ą ε

¸

“ P

˜

|
ÿ

jPJ
ωjplogpp̂tpwjqq ´ logpptpwjqqq| ą ε

¸

ď P

˜

ÿ

jPJ
|ωj ||logpp̂tpwjqq ´ logpptpwjqq| ą ε

¸

(by the triangle inequality and |xy| “ |x||y|),

ď P

˜

J |ωM | sup
j
|logpp̂tpwjqq ´ logpptpwjqq| ą ε

¸

“ P

˜

sup
j
| logpp̂tpwjqq ´ logpptpwjqq| ą

ε

J |ωM |

¸

ď P

˜

1

L
sup
j
|p̂tpwjq ´ ptpwjq| ą

ε

J |ωM |

¸

(by Lemma 2),

ď 2 exp

˜

´2N

ˆ

εL

J |ωM |

˙2
¸

(by Lemma 1 with α “
Lε

J |ωM |
).
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Proof of Proposition 3

Proof.
1.

P

ˆ

sup
t
|ẑtpJ ,ωq ´ ztpJ ,ωq| ą ε

˙

“ P

˜

T
ď

t“1

|ẑtpJ ,ωq ´ ztpJ ,ωq| ą ε

¸

ď

T
ÿ

t“1

P p|ẑtpJ ,ωq ´ ztpJ ,ωq| ą εq

(by Boole’s inequality),

ď T2 exp

˜

´2N

ˆ

εL

J |ωM |

˙2
¸

(by Lemma 3).

2. Follows if we choose ε “ J |ωM |
?
C2`2 logp2T q

2
?
NL

for a sufficiently large constant C.
We can see this by setting

expp´C2{2q “ T2 exp

˜

´2N

ˆ

εL

J |ωM |

˙2
¸

and solving for ε.

Proof of Theorem 1

Lemma 4. If Er|pz˚t qq|r`δs ă 8 and Er|pξw,tqq|r`δs ă 8 for all w, then Er|zqj,t|r`δs ă
8 for all t “ 1, . . . , T and for each j P t1, . . . , J ´ 1u.

Proof.

Er|zqj,t|
r`δs “ E

”

|z˚t pα1,wj ´ α1,wJ q ` pξwj ,t ´ ξwJ ,tq|
qpr`δq

ı

ď E
”

2qpr`δq´1|z˚t pα1,wj ´ α1,wJ q|
qpr`δq ` 2qpr`δq´1|ξwj ,t ´ ξwJ ,t|

qpr`δq
ı

(as |a` b|q ď 2q´1p|a|q ` |b|qq for q ě 1)

“ 2qpr`δq´1|α1,wj ´ α1,wJ |
qpr`δqEr|z˚t |qpr`δqs
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` 22qpr`δq´2pEr|ξwj ,t|qpr`δqs ` Er|ξwJ ,t|
qpr`δqsq

(by linearity of expectation, |xy|p “ |x|p|y|p and

|a´ b|q ď 2q´1p|a|q ` |b|qq for q ě 1)

which is finite as E
“

|z˚t |qpr`δq
‰

ă 8 and E
“

|ξwj ,t|qpr`δq
‰

ă 8 for each j P t1, . . . , Ju.

Proof. Consistency: Our outcome equation is

yt “ Ytθ0 ` et.

The feasible 2SLS estimator is

θ̂pẑtq “ pY
1ẐpẐ 1Ẑq´1Ẑ 1Y q´1Y 1ẐpẐ 1Ẑq´1Ẑ 1y

“ pY 1ẐpẐ 1Ẑq´1Ẑ 1Y q´1Y 1ẐpẐ 1Ẑq´1Ẑ 1pY 1θ0 ` eq.

We will show (at the end of the proof) at that 1
T Ẑ

1Y
p
Ñ QY z and 1

T Ẑ
1Ẑ

p
Ñ Qzz.

Taking this as given,

θ̂pẑtq ´ θ0 “ pQY zQ
´1
zz QzY q

´1QY zQ
´1
zz

1

T

T
ÿ

t“1

ẑtet ` opp1q. (11)

So it will suffice to show that 1
T

řT
t“1 ẑtet “ opp1q:

1

T

T
ÿ

t“1

ẑtet “
1

T

T
ÿ

t“1

pzt ` pẑt ´ ztqqet

“
1

T

T
ÿ

t“1

ztet `
1

T

T
ÿ

t“1

pẑt ´ ztqet. (12)

The first term in (12) is equal to 1
T

řT
t“1 Erztets ` opp1q, by the WLLN of McLeish

(1975). The WLLN is justified as for each j P t1, . . . , J ´ 1u and each t,

Er|zj,tet|r`δs ď pEr|z2
j,t|r`δsq1{2pEr|e2

t |r`δsq1{2

(by Hölder’s inequality)

ď 8
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(by Assumption 3.2 and Lemma 4).

The second term in (12) is, for each j P t1, . . . , J ´ 1u,

1

T

T
ÿ

t“1

pẑj,t ´ zj,tqet ď sup
t
|ẑj,t ´ zj,t|

1

T

T
ÿ

t“1

|et|

“ Op

˜

c

log T

N

¸

opp1q

(by Proposition 3),

where 1
T

řT
t“1 et “ opp1q by the WLLN of McLeish (1975) and justified by Assump-

tion 3.2. Finally as
a

log T {N Ñ 0 by assumption, Op
ˆ

b

log T
N

˙

opp1q “ opp1q.

It remains to show that 1
T Ẑ

1Y
p
Ñ QzY and 1

T Ẑ
1Ẑ

p
Ñ Qzz. First 1

T Ẑ
1Y

p
Ñ QzY ,

1

T
Ẑ 1Y “

1

T

T
ÿ

t“1

ẑtYt

“
1

T

T
ÿ

t“1

pzt ` pẑt ´ ztqqYt

“
1

T

T
ÿ

t“1

ztYt `
1

T

T
ÿ

t“1

pẑt ´ ztqYt. (13)

The first term in (13) is equal to QzY `opp1q, by the WLLN of McLeish (1975). The
WLLN is justified as for each j P t1, . . . , J ´ 1u and each t,

Er|zj,tYt|r`δs ď pEr|z2
j,t|r`δsq1{2pEr|Y 2

t |r`δsq1{2

(by Hölder’s inequality)

ď 8

(by Assumption 3.2 and Lemma 4).

The second term in (13) is, for each j P t1, . . . , J ´ 1u,

1

T

T
ÿ

t“1

pẑj,t ´ zj,tqYt ď sup
t
|ẑj,t ´ zj,t|

1

T

T
ÿ

t“1

|Yt|
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“ Op

˜

c

log T

N

¸

Opp1q

(by Proposition 3),

where 1
T

řT
t“1 Yt “ Opp1q by the WLLN of McLeish (1975) and justified Assump-

tion 3.2. Finally as
a

log T {N Ñ 0, Op
ˆ

b

log T
N

˙

Opp1q “ opp1q.

Finally, 1
T Ẑ

1Ẑ
p
Ñ Qzz,

1

T
Ẑ 1Ẑ “

1

T

T
ÿ

t“1

ẑtẑ
1
t

“
1

T

T
ÿ

t“1

pzt ` pẑt ´ ztqqpzt ` pẑt ´ ztqq
1

“
1

T

T
ÿ

t“1

ztz
1
t

loooomoooon

p1q

`2
1

T

T
ÿ

t“1

ztpẑt ´ ztq
1

looooooooomooooooooon

p2q

`

T
ÿ

t“1

ẑtẑ
1
t

loomoon

p3q

. (14)

(1) in (14) is equal to Qzz ` opp1q, by the WLLN of McLeish (1975) and justified by
Assumption 3.2. (2) in (14) is, for each i, j P t1, . . . , J ´ 1u,

1

T

T
ÿ

t“1

pẑi,t ´ zi,tqzj,t ď sup
t
|ẑi,t ´ zi,t|

1

T

T
ÿ

t“1

|zj,t|

“ Op

˜

c

log T

N

¸

Opp1q

(by Proposition 3),

where 1
T

řT
t“1|zj,t| “ Opp1q by the WLLN of McLeish (1975) and justified Assump-

tion 3.2. (3) in (14) is, for each i, j P t1, . . . , J ´ 1u,

1

T

T
ÿ

t“1

pẑi,t ´ zi,tqpẑj,t ´ zj,tq ď sup
t
|pẑi,t ´ zi,tqpẑj,t ´ zj,tq|

ď sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

“ Op

˜

c

log T

N

¸

Op

˜

c

log T

N

¸
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(by Proposition 3),

“ Op

ˆ

log T

N

˙

“ opp1q

(as
a

log T {N Ñ 0).

By Assumption 3.2, Qzz is nonsingular for large T and Q´1
zz is bounded by Assump-

tion 3.3.

Asymptotic normality:

Multiplying (11) by
?
T yields

?
T pθ̂pẑtq ´ θ0q “ pQY zQ

´1
zz QzY q

´1QY zQ
´1
zz

1
?
T

T
ÿ

t“1

ẑtet ` opp1q.

The term 1?
T

řT
t“1 ẑtet can be written as

1
?
T

T
ÿ

t“1

ẑtet “
1
?
T

T
ÿ

t“1

pzt ` pẑt ´ ztqqet

“
1
?
T

T
ÿ

t“1

ztet `
1
?
T

T
ÿ

t“1

pẑt ´ ztqet. (15)

The second term in (15) is, for each j P t1, . . . , J ´ 1u,

1
?
T

T
ÿ

t“1

pẑj,t ´ zj,tqet ď sup
t
|pẑj,t ´ zj,tq|

1
?
T

T
ÿ

t“1

|et|

“ Op

˜

c

log T

N

¸

Opp1q

(by Proposition 3),

where 1?
T

řT
t“1|et| “ Opp1q follows from Theorem 2.6 of Domowitz andWhite (1982),

justified by Assumption 3.2. Finally as
a

log T {N Ñ 0, Op
ˆ

b

log T
N

˙

Opp1q “ opp1q.

The first term in (15) converges in distribution to Np0,Ωq. Recall that the average
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covariance matrix is

Ω “
1

T

T
ÿ

t“1

Ere2
t ztz

1
ts `

1

T

T´1
ÿ

τ“1

T
ÿ

t“τ`1

Eretet´τ pztz1t´τ ` zt´τz1tqs.

Ω is positive for T large by Assumption 3.5, and hence Ω´1{2 is well defined. By the
CLT of Theorem 2.6 of Domowitz and White (1982), justified by Assumption 3.4,

1?
T

Ω´1{2
řT
t“1 ẑtet

d
Ñ Np0, Iq.

Asymptotic Variance:

Our estimator for the asymptotic variance Vθ is

V̂θpẑtq “ pY
1PẐY q

´1Y 1PẐΩ̂pẑtqPẐY pY
1PẐY q

´1

We have shown above that 1
T Ẑ

1Y
p
Ñ QzY and 1

T Ẑ
1Ẑ

p
Ñ Qzz, so it suffices to show

that Ω̂pẑtq
p
Ñ Ω.

Recall that

Ω̂pẑtq “
1

T

T
ÿ

t“1

ê2
t ẑtẑ

1
t `

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

êtêt´τ pẑtẑ
1
t´τ ` ẑt´τ ẑ

1
tq

and

Ω “
1

T

T
ÿ

t“1

Ere2
t ztz

1
ts `

1

T

T´1
ÿ

τ“1

T
ÿ

t“τ`1

Eretet´τ pztz1t´τ ` zt´τz1tqs.

Additionally define

Ωpθq “
1

T

T
ÿ

t“1

pyt ´ Ytθq
2z1tzt `

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθqpyt´τ ´ Yt´τθqpztz
1
t´τ ` zt´τz

1
tq

and

Ω̃pθq “
1

T

T
ÿ

t“1

Erpyt ´ Ytθq2z1tzts

`
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

Erpyt ´ Ytθqpyt´τ ´ Yt´τθqpztz1t´τ ` zt´τz1tqs.
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The proof will proceed as follows. We want to show that pẑtq
p
Ñ Ω. We will do so

by showing
1. pẑtq

p
Ñ Ωpθ̂q,

2. Ωpθq
a.s.
Ñ Ω̃pθq uniformly in θ,

3. Ω̃pθ̂q
p
Ñ Ω̃pθ0q,

4. Ω̃pθ0q
p
Ñ Ω.

1. Ω̂pẑtq
p
Ñ Ωpθ̂q

Ω̂pẑtq is comprised on 2 terms,

Ω̂ “
1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2ẑtẑ

1
t

looooooooooomooooooooooon

p1q

`
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpẑtẑ
1
t´τ ` ẑt´τ ẑ

1
tq

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

p2q

,

as is Ωpθ̂q

Ω̂ “
1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2ztz

1
t

looooooooooomooooooooooon

paq

(16)

`
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpztz
1
t´τ ` zt´τ ẑ

1
tq

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

pbq

. (17)

We can rewrite (1) as

1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2ẑtẑ

1
t “

1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2pzt ` pẑt ´ ztqqpzt ` pẑt ´ ztqq

1

“
1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2ztzt

looooooooooomooooooooooon

p1.1q

`
1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2pẑt ´ ztqz

1
t

loooooooooooooooomoooooooooooooooon

p1.2q
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`
1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2ztpẑt ´ ztq

1

loooooooooooooooomoooooooooooooooon

p1.2q

`
1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2pẑt ´ ztqpẑt ´ ztq

1

looooooooooooooooooooomooooooooooooooooooooon

p1.3q

. (18)

(1.1) is identical to (a) in (17), so next we will show that (1.2) and (1.3) are opp1q.
Note that yt ´ Ytθ̂ “ et ` Ytpθ0 ´ θ̂q. (1.2), for each i and j is

1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2pẑi,t ´ zi,tqzj,t ď sup

t
|ẑi,t ´ zi,t|

1

T

T
ÿ

t“1

|pet ` Ytpθ0 ´ θ̂qq
2zj,t|

“ sup
t
|ẑi,t ´ zi,t|

1

T

T
ÿ

t“1

|e2
t zj,t ` 2etYtpθ0 ´ θ̂qzj,t ` Y

2
t pθ0 ´ θ̂q

2zj,t|

ď sup
t
|ẑj,t ´ zj,t|

1

T

T
ÿ

t“1

|e2
t zj,t|

loooooooooooooooomoooooooooooooooon

p1.2.1q

`2 sup
t
|ẑi,t ´ zi,t||θ0 ´ θ̂|

1

T

T
ÿ

t“1

|etYtzj,t|
loooooooooooooooooooooomoooooooooooooooooooooon

p1.2.2q

` sup
t
|ẑi,t ´ zi,t||θ0 ´ θ̂|2

1

T

T
ÿ

t“1

|Y 2
t zj,t|

loooooooooooooooooooooomoooooooooooooooooooooon

p1.2.3q

(1.2.1) is Op
ˆ

b

log T
N

˙

Opp1q. The Opp1q term is by the WLLN, which is justified

by Er|e2
t zj,t|r`δs ď Er|e3

t |r`δs2{3Er|z3
j,t|r`δs1{3 for each j, by Hölder’s inequality and

is finite by Assumption 3.2.

(1.2.2) is Op
ˆ

b

log T
N

˙

opp1qOpp1q. The opp1q follows from the consistency of θ̂. The

Opp1q is by the WLLN, which is justified by

Er|etYtzj,t|r`δs ď Er|e3
t |r`δs1{3Er|Y 3

t |r`δs1{3Er|z3
j,t|r`δs1{3

for each j by Hölder’s inequality and is finite by Assumption 3.2.

(1.2.3) is Op
ˆ

b

log T
N

˙

opp1q
2Opp1q. The Opp1q is by the WLLN, which is justified

by Er|Y 2
t zj,t|r`δs ď Er|Y 3

t |r`δs2{3Er|z3
j,t|r`δs1{3 for each j by Hölder’s inequality and
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is finite by Assumption 3.2.

(1.3) in Equation (18) is for each i and j

1

T

T
ÿ

t“1

pyt ´ Ytθ̂q
2pẑi,t ´ zi,tqpẑj,t ´ zj,tq “

1

T

T
ÿ

t“1

pet ` Ytpθ0 ´ θ̂qq
2pẑi,t ´ zi,tqpẑj,t ´ zj,tq

ď sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

ˆ
1

T

T
ÿ

t“1

|e2
t ` 2etYtpθ0 ´ θ̂q ` Y

2
t pθ0 ´ θ̂q

2|

ď sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

1

T

T
ÿ

t“1

|e2
t |

looooooooooooooooooooooomooooooooooooooooooooooon

p1.3.1q

` 2 sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t||θ0 ´ θ̂|

1

T

T
ÿ

t“1

|etYt|
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

p1.3.2q

` sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t||θ0 ´ θ̂|2

1

T

T
ÿ

t“1

|Y 2
t |

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

p1.3.3q

(1.3.1) is Op
´

log T
N

¯

opp1q. The Opp1q is by the WLLN, which is justified by Assump-
tion 3.2.

(1.3.2) is Op
´

log T
N

¯

opp1qOpp1q. The Opp1q is by the WLLN, which is justified by

Er|etYt|r`δs ď Er|e2
t |r`δs1{2Er|Y 2

t |r`δs1{2 by Hölder’s inequality and is finite by As-
sumption 3.2.

(1.3.3) is Op
´

log T
N

¯

opp1q
2Opp1q. The Opp1q is by the WLLN, which is justified by

Assumption 3.2.

Now we turn our attention to (2),

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpẑtẑ
1
t´τ ` ẑt´τ ẑ

1
t´τ q.
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It suffices to only consider

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qẑtẑ
1
t´τ “

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qẑtẑ
1
t´τ

“
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpzt ` pẑt ´ ztqqpzt´τ ` pẑt´τ ´ zt´τ qq
1

“
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qztz
1
t´τ

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

p2.1q

`
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qztpẑt´τ ´ zt´τ q
1

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

p2.2q

`
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpẑt ´ ztqz
1
t´τ

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

p2.2q

`
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpẑt ´ ztqpẑt´τ ´ zt´τ q
1

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

p2.3q

.

(2.1) is identical to (b) in (17), so next we will show that (2.2) and (2.3) are opp1q.
(2.2) is for each i and j

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpẑi,t´τ ´ zi,t´τ qzj,t´τ

“
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pet ` Ytpθ0 ´ θ̂qqpet´τ ` Yt´τ pθ0 ´ θ̂qqpẑi,t´τ ´ zi,t´τ qzj,t´τ

ď sup
t
|ẑi,t ´ zi,t|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|etet´τzj,t´τ |
loooooooooooooooooooooooomoooooooooooooooooooooooon

p2.2.1q

` sup
t
|ẑi,t ´ zi,t||θ0 ´ θ̂|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|etYt´τzj,t´τ |
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

p2.2.2q
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` sup
t
|ẑi,t ´ zi,t||θ0 ´ θ̂|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|Ytet´τzj,t´τ |
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

p2.2.2q

` sup
t
|ẑi,t ´ zi,t||θ0 ´ θ̂|2

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|YtYt´τzj,t´τ |
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

p2.2.3q

.

Consider first (2.2.1). We want to show that 1
T

řl
τ“1

řT
t“τ`1|etet´τzj,t´τ | “ Opp1q.

First note that the expectation of each term is bounded uniformly by Assumption 3.2,
and hence bounded by functions that are uniformly r ` δ integrable. Then using
Theorem 2.5 of Domowitz and White (1982),

|pT ´ τqγ´1
T
ÿ

t“1

|etet´τzj,t´τ |´ Er|etet´τzj,t´τ |s|
a.s.
Ñ 0, (19)

for each τ “ 1, . . . , l and 0 ă γ ă δ{pr ` δq. Thus 1
T

řT
t“τ`1|etet´τzj,t´τ | ă T´γκ

for some κ ă 8, and therefore 1
T

řl
τ“1

řT
t“τ`1|etet´τzj,t´τ | ď lT´γκ. Given that

l “ OpT γq for 0 ă γ ă δ{pr ` δq, we have our desired result. Thus (2.2.1) is

Op

ˆ

b

log T
N

˙

Opp1q by Proposition 3 and is opp1q as
b

log T
N Ñ 0 by assumption.

Similar results hold for (2.2.2) and (2.2.3), noting that the expectations of these
terms are bounded by Assumption 3.2 and hence bounded by functions that are
uniformly r ` δ integrable.

(2.3) is, for each i and j

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pyt ´ Ytθ̂qpyt´τ ´ Yt´τ θ̂qpẑi,t ´ zi,tqpẑj,t´τ ´ zj,t´τ q

“
1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

pet ` Ytpθ0 ´ θ̂qqpet´τ ` Yt´τ pθ0 ´ θ̂qqpẑi,t ´ zi,tqpẑj,t´τ ´ zj,tq

ď sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|etet´τ |
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

p2.3.1q
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` sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|etYt´τ |
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

p2.3.2q

` sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|Ytet´τ |
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

p2.3.2q

` sup
t
|ẑi,t ´ zi,t| sup

t
|ẑj,t ´ zj,t|

1

T

l
ÿ

τ“1

T
ÿ

t“τ`1

|YtYt´τ |
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

p2.3.3q

.

Using identical arguments to those above, all these terms are opp1q and hence (2.3)
is opp1q as required.

2. Ωpθq
a.s.
Ñ Ω̃pθq uniformly in θ

Let dt,τ “ etet´τzi,tzj,t´τ ´ Eretet´τzi,tzj,t´τ s, noting that we have suppressed the
dependence of i, j and θ. We need to show that

| 1
T

T
ÿ

t“1

dt,0|
a.s.
Ñ 0, (20)

l
ÿ

τ“1

| 1
T

T
ÿ

t“1

dt,τ |
a.s.
Ñ 0, (21)

uniformly in θ, for all τ , where l “ OpT γq, 0 ă γ ă δ{pr ` δq. To show (21), note
that

sup
θPΘ

l
ÿ

τ“1

| 1
T

T
ÿ

t“1

dt,τ | ď
l
ÿ

τ“1

sup
θPΘ
| 1
T

T
ÿ

t“1

dt,τ |.

The dt,τ are continuous uniformly in t and τ and dominated by r ` δ integrable
functions for all τ . Then by Theorem 2.5 of Domowitz and White (1982)

sup
θPΘ

l
ÿ

τ“1

| 1
T

T
ÿ

t“1

dt,τ | ă lT´γκ
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for some κ ă 8, for large T and almost every sequence tzt, etu. The sets Fl of se-
quences tzt, etu such that supθPΘ|T γ´1

řT
t“1 dt,τ | do not converge to 0 for τ “ 1, . . . , l

given l “ OpT γq, 0 ă γ ă δ{pr`δq, constitute an increasing sequence of sets of mea-
sure zero, such that P p

Ť8
l“1 Flq “ 0. Equation (20) holds using identical arguments

to those used for (19).

3. Ω̃pθ̂q
p
Ñ Ω̃pθ0q

From the mean value theorem for i, j “ 1, . . . , p

|Ω̃i,jpθ̂q ´ Ω̃i,jpθ0q| ď |Ω̃i,jpθ̄qpθ̂ ´ θ0q| ď
p
ÿ

i“1

∣∣∣∣∣BΩ̃i,jpθ̄q

Bθi

∣∣∣∣∣ |θ̂i ´ θi,0|, (22)

where θ̄ lies in the segment between θ̂ and θ0 and the last inequality follows from
the triangle inequality. By Assumption 3.2, for all i∣∣∣∣∣BΩ̃i,jpθ̄q

Bθi

∣∣∣∣∣ ď T γ∆`∆,

and hence (22) is bounded above by

∆T γ´1{2
p
ÿ

i“1

|T 1{2pθ̂i ´ θi,0q|`∆

p
ÿ

i“1

|θ̂i ´ θi,0|. (23)

θ̂i
a.s.
Ñ θi,0 by our consistency result and T 1{2pθ̂i ´ θi,0q “ Opp1q by our asymptotic

normality result. As γ ă 1{2, the right hand side of (23) is opp1q.

4. Ω̃pθ0q Ñ Ω

Ω̃pθ0q ´Ω “
1

T

T´1
ÿ

τ“l`1

T
ÿ

t“τ`1

Eretet´τ pztz1t´τ ` zt´τz1tqs.
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We only need to show

1

T

T´1
ÿ

τ“l`1

T
ÿ

t“τ`1

Eretet´τztz1t´τ s Ñ 0.

As Er|ztet|2`2ηs ă 8 by Assumption 3.6, where η “ r ` δ ´ 1, by Lemma 2.2 of
White and Domowitz (1984)

Eretet´τ pztz1t´τ ` zt´τz1tqs ď cαpτqη{p2`2ηq,

where c is a finite constant. Therefore

1

T

T´1
ÿ

τ“l`1

T
ÿ

t“τ`1

Eretet´τztz1t´τ s ď c
T´1
ÿ

τ“l`1

αpτqη{p2`2ηq. (24)

(24) goes to zero as

lim
TÑ8

T´1
ÿ

τ“l`1

αpτqη{p2`2ηq “ lim
TÑ8

T´1
ÿ

τ“0

αpτqη{p2`2ηq ´ lim
TÑ8

l
ÿ

τ“0

αpτqη{p2`2ηq

and
ř8
τ“0 αpτq

η{p2`2ηq ă 8 by Assumption 3.1.
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C Additional Figures and Tables

Word Score Word Score Word Score
undervalue 0.596 beat 0.527 unanimously 0.519
repurchase 0.573 tender 0.526 buoy 0.518
surpass 0.554 top 0.525 bake 0.518
upgrade 0.551 visible 0.524 get 0.518
rally 0.548 soar 0.524 fragment 0.518
surge 0.547 horizon 0.523 activist 0.518
treasury 0.543 tanker 0.523 cardiology 0.518
customary 0.539 deepwater 0.522 oversold 0.517
imbalance 0.538 reconnaissance 0.522 bidder 0.517
jump 0.538 tag 0.521 cheer 0.517
declare 0.535 deter 0.521 exceed 0.517
unsolicited 0.535 valve 0.519 terrain 0.517
up 0.534 foray 0.519 terrific 0.516
discretion 0.531 clip 0.519 upbeat 0.516
buy 0.531 fastener 0.519 gratify 0.515
climb 0.528 bracket 0.519 armor 0.515
bullish 0.527 potent 0.519

Table 4: Top 50 highest positive sentiment terms and their weights, from KKX
Table A2.
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Word Score Word Score Word Score
shortfall 0.323 fall 0.446 unfavorable 0.462
downgrade 0.382 covenant 0.451 regain 0.462
disappointing 0.392 woe 0.452 deficit 0.462
tumble 0.402 slash 0.453 irregularity 0.463
blame 0.414 resign 0.454 erosion 0.464
hurt 0.414 delay 0.454 bondholder 0.464
plummet 0.423 subpoena 0.454 weak 0.465
auditor 0.424 lackluster 0.455 hamper 0.465
plunge 0.429 soften 0.456 overrun 0.467
waiver 0.429 default 0.46 inefficiency 0.467
miss 0.43 soft 0.46 persistent 0.468
slowdown 0.433 widen 0.46 notify 0.468
halt 0.435 postpone 0.46 allotment 0.469
sluggish 0.439 unfortunately 0.46 worse 0.469
lower 0.441 insufficient 0.462 setback 0.471
downward 0.443 unlawful 0.462 grace 0.472
warn 0.444 issuable 0.462

Table 5: Top 50 negative sentiment-charged terms and their weights, from
KKX Table A2.
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Figure 3: Impulse responses of interest rates (top), inflation (middle) and
output (bottom) to a one unit contractionary monetary policy shock identified
using the Romer and Romer 2004 monetary policy shock series. Horizon is
quarters. Shaded area represents the 95% confidence interval.
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Figure 4: Text instruments (black) and Romer and Romer (2004) monetary
policy shocks (blue). Monetary policy shock using text instruments is esti-
mated using the fitted values for the first stage estimated on the full sample,
demeaned.
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D Word Mover’s Distance and Cosine Sim-

ilarity

The cosine similarity is computed by first computing the D ˆ V document term
frequency matrix F of the appropriately preprocessed definitions of each term. Entry
Fd,v is the frequency of term v in document d. Denoting each row of the document
term matrix as a ‘document vector’, the cosine similarity between document i and j
is simply the inner product of the document vectors for i and j.

WMD relies on word embeddings, a method to transform each term in a vocabulary
to an element in a low dimensional vector space (much lower dimensional than the
size of the vocabulary V ), which we will denote vi. The word embeddings that
we use are the word2vec (Mikolov et al. 2013a; Mikolov et al. 2013b) Google News
corpus pre-trained vectors.27 Other popular choices for pre-trained word vectors are
GloVe (Pennington, Socher, and Manning 2014), fastText (Bojanowski et al. 2017)
and BERT (Devlin et al. 2019).

WMD is computed as the cost to transform a document vector d into a document
vector d1. The ‘travelling cost’ between terms i and j is denoted cpvi,vjq “ ‖vi´vj‖2.
Let Tij P RVˆV be a sparse flow matrix where Tij ě 0 denotes how much of word i
in d moves to word j in d1.

To transform document d entirely into document d1, we ensure that the entire out-
going flow for each term i equals di, that is

ř

j Tij “ di, and the entire incoming
flow to term j equals d1j ,

ř

i Tij “ d1j . The WMD between two documents d and d1

is the solution to the following optimal transport problem

min
Tě0

V
ÿ

i,j“1

Tij cpi, jq,

s.t.
V
ÿ

j“1

Tij “ di, @i P t1, ¨ ¨ ¨ , V u,
V
ÿ

i“1

Tij “ d1j , @j P t1, ¨ ¨ ¨ , V u.

27. These 300-dimensional word vectors are trained on 100 billion words, and cover a
vocabulary of around 3 million words. They can be obtained from the word2vec website.
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D.1 Synonyms: Word Mover’s Distance

50 top synonyms for ‘monetary policy ’, ‘inflation’ and ‘output ’, computed using
WMD. Terms are ranked in ascending WMD from target term, with the target term
listed first.

Monetary Policy
monetary policy, international monetary system, open market operations, talk down,
macroeconomic policy, monetary system, zero interest rate, floating exchange rate,
central bank, easy monetary policy

Inflation
inflation, imported inflation, non-accelerating inflation rate of unemployment, in-
flationary gap, wage-price spiral, creeping inflation, anticipated inflation, Phillips
curve, inflationary spiral, price stability, real balances, price level, real interest rate,
sacrifice ratio, real balance effect, underlying rate of inflation, price index, strength-
ening of a currency, capital gain, kinked demand curve, escalator clause, natural
rate of interest, real GDP, real GNP, relative price, nominal anchor, current prices,
overfull employment, fiscal drag, monetarism, price volatility, over-stimulation, real
wages, capital appreciation, real exchange rate, natural rate of unemployment, sound
money, real income, real terms, oil price, devaluation, structural break, store of value,
cuts in expenditure, under-valued currency, cost(s), internal balance, soft landing,
revaluation, depression

Output
output, economic profit, capacity, inputs, potential output, process innovation, effi-
ciency, inefficiency, innovation, knowledge economy, ceiling, factor cost, infrastruc-
ture, free enterprise, outsourcing, constant prices, capital goods, initial conditions,
mark-to-market, demand, economic indicators, mass production, development, dou-
ble counting, producer good, invention, supply, real costs, corporate sector, economic
efficiency, production function, fiscal stimulus, turnover, total factor productivity, re-
deployment, economic planning, economic development, GNP, parameter, technol-
ogy, floor, simulation, aggregate demand, enterprise, service industry, prior, foreign
trade, conspicuous consumption, break-even, eurodollars
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E Smoothing Multinomial Frequencies

One practical issue the generalized log odds estimator faces is that it is undefined
when the sample frequency of a term is 0, due to the log transformation. This
occurs only in finite samples as by definition of ptpw, cq P pL, 1q, (this L is used in
the construction of Proposition 3).

A common way to address this issue is by smoothing the multinomial frequencies.28

We will use additive or Laplace smoothing, which can be motivated as the posterior
mean of the multinomial frequencies with a Dirichlet prior.

Define xj,t “ 1
Nt

řNt
w“1 1wt,n“wj , for j “ 1, . . . , V . Then

px1,t, . . . , xV,tq „ Multipptpw1q, . . . , ptpwV qq.

Assume that ptpwjq follows a Dirichlet prior with parameter ηj,t, that is

pptpw1q, . . . , ptpwV qq „ Dirpη1,t, . . . , ηV,tq.

The Dirichlet distribution is a conjugate prior for the multinomial distribution, and
hence the posterior has closed form

pptpw1q, . . . , ptpwV qq|px1,t, . . . , xV,tq „ Dirpη1,t ` x1,t, . . . , ηV,t ` xV,tq.

We will use the posterior mean as our estimator of ptpwj , cq

p̂tpwq “
ηj,t ` xj,t

řV
j“1 ηj,t ` xj,t

“
ηj,t ` xj,t

Nt `
řV
j“1 ηj,t

,

where the second equality follows from
řV
j“1 xj,t “ Nt. If one were to assume a

uniform Dirichlet prior, which sets ηj,t “ 1, for j “ 1, . . . , V , our estimator becomes

p̂tpwj , cq “
1` xj,t
Nt ` V

.

28. For a comprehensive list of smoothing techniques in Natural Language Processing see
Chen and Goodman (1999).
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In our applications, as well as our Monte Carlo simulations, we set ηj,t “ 0.00001

for all j and t.
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F Generalized log odds

Proposition 4. For any J , context c, weights ω, for each t as N Ñ8:
1. ẑtpJ ,ωq is consistent,

ẑtpJ ,ωq
p
Ñ ztpJ ,ωq.

2. ẑtpJ ,ωq is asymptotically normal

?
NpẑtpJ ,ωq ´ ztpJ ,ωqq

d
Ñ Np0, Gtq,

where the asymptotic variance is

Gt “
ÿ

jPJ

ω2
j

ptpwjq
´

ÿ

i,jPJ
ωjωi.

Note that the variance of the generalized log odds estimator is Gt “
ř

jPJ
ω2
j

ptpwjq
if

ř

jPJ ωj “ 0, which we will impose when we use this estimator as an instrument.

Proof of Proposition 4

Proof. Consistency:

As the wt,n are i.i.d., we can apply the Law of Large Numbers for each wj P J and
for each t “ 1, . . . , T ,

1

N

N
ÿ

n“1

1wt,n“wj

p
Ñ Er1wt,n“wj s

“ ptpwt,n “ wjq.

The result then follows from the Continuous Mapping Theorem, noting
ř

jPJ ωj logpxjq

is continuous in each xj .

Asymptotic Normality: For notational convenience denote p̂tpwjq :“ 1
Nt

řNt
w“1 1wt,n“wj .

Denote pt “ rptpw1q, . . . , ptpwV qs
1, the vector of conditional probabilities, and p̂t “

rp̂tpw1q, . . . , p̂tpwV qs
1, the vector of estimates of the conditional probabilities.
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We will show asymptotic normality using the delta method.

Using the Central Limit Theorem we have,
?
Npp̂t ´ ptq

d
Ñ Np0,Mtq, where Mt “

Pt ´ ptp
1
t, and Pt is a diagonal matrix with entries pt.

The generalized log odds is a function of pt, with derivative ∇pptqj “ ωj{ptpwjq for
j P J and 0 otherwise. By the delta method,

?
Npztpp̂tq ´ ztpptq

d
Ñ Np0, Gtq,

where

Gt “ ∇pt
1Mt∇pt “

ÿ

jPJ

ω2
j

ptpwjq
´

ÿ

jPJ

ÿ

iPJ
ωjωi.
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G Conditional Probabilities

The results of Proposition 2 demonstrate that under the weak conditions of Assump-
tion 1, we can find valid instruments using the log odds ratio of two special words
in a shared context. In this section, we show that under those same assumptions
(adapted for a single word), conditional probabilities are not exogenous, and hence
are not instruments. We later show that under a stronger set of assumptions we can
use conditional probabilities as instruments.

Consider the conditional probability of w˚ under the assumption α1,w˚ ‰ 0 and
α2,w˚ “ 0. It is

ptpw
˚q “

exptx1tγ ` α1,w˚z
˚
t ` ξw˚,tu

řV
w1“1 exptx1tγ ` α1,w1z

˚
t ` α2,w1et ` ξw1,tu

. (25)

This conditional probability are a not valid instrument, because it is not exogenous
(although it does satisfy relevance), due to the presence of et in the denominator of
(25). This is not merely as artifact of the logit form of conditional probability, this
represents a tradeoff for speakers (see Section 3).29

Proposition 5. Suppose w˚ satisfies α1,w˚ ‰ 0 and α2,w˚ “ 0. Then ptpw˚q is an
not instrument for Yt.

If we place stronger assumptions on all terms in the vocabulary, we will be able to
use conditional probabilities as instruments.

Assumption 4. There exists a term w˚ such that
1. |α1,w˚ | ą |α1,w1 |, for all w1 ‰ w˚.
2. α2,w “ 0 for all w.
3. ErYt|ets “ 0.

Assumption 4.1 states that the likelihood of w˚ is shifted by z˚t more than any other
word. This is sufficient to show ptpw

˚q is strictly increasing in z˚t , which is used to
show relevance. The need for this stronger condition (relative to Assumption 1.1)

29. The endogeneity problem of conditional probabilities depends on the extent to which
the denominator in (25) varies with et. Under certain conditions, the denominator (known
as the log partition function) can be well approximated by a constant (known as self-
normalization, see Andreas and Klein (2015)).
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is that ptpw˚q is nonlinear in z˚t . Assumption 4.2 states that the likelihood of all
words do not depend on the confounding unobservables et. This is what will allow
us to remove the effect et of the denominator term of ptpw˚q. Assumption 4.3 is a
strengthening of the uncorrelated assumption ErYtets “ 0. This is required to show
exogeneity as ptpw˚q is a nonlinear function of et.

Proposition 6. Let Assumption 4 hold. Then ptpw˚q is an instrument for Yt.

G.1 Proofs in Appendix G

Conditional probabilities are nonlinear transformations of the data pxt, z˚t , et, ξw,tqq.
In order to show the covariance between the conditional probabilities and z˚t and et,
under general distributions, we will need the following lemma.

Lemma 5. For a random variable X, not constant almost surely, if gpxq is strictly
decreasing, and Covpgpxq, xq ă 8, then Covpgpxq, xq ă 0. If gpxq is strictly increas-
ing, and Covpgpxq, xq ă 8, then Covpgpxq, xq ą 0.

Proof.

Covpgpxq, xq “ ErXgpxqs ´ ErXsErgpxqs

“ ErpX ´ ErXsqgpXqs

Note that ErX ´ ErXsgpErxsqs “ ErX ´ ErXssgpErXsq “ 0, and hence

“ ErpX ´ ErXsqpgpXq ´ gpErXsqs.

As g is strictly decreasing pX ´ ErXsqpgpXq ´ gpErXsq ď 0, with equality when
X “ ErXs. As X is not constant almost surely, Covpgpxq, xq ă 0.

The proof for when gpxq is strictly increasing is identical.
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Proof of Proposition 5

Proof. It will suffice to show that for certain parameter values that we fail to satisfy
exogeneity. Suppose |α2,w˚ | ą |α2,w1 | for all w1 ‰ w˚. The conditional probability is

ptpw
˚q “

exppx1tγ ` α1,w˚z
˚
t ` ξw˚,tq

řV
w1“1 exppx1tγ ` α1,w1z

˚
t ` α2,w1et ` ξw1,tq

.

If we take the derivative w.r.t. et

Bptpw
˚q

Bet
“

exppx1tγ ` α1,w˚z
˚
t ` ξw˚,tq

p
řV
w1“1 exppx1tγ ` α1,w1z

˚
t ` α2,w1et ` ξw1,tqq2

ˆ

V
ÿ

w1“1

pα2,w˚ ´ α2,w1q exppx1tγ ` α1,w1z
˚
t ` α2,w1et ` ξw1,tq.

As |α2,w˚ | ą |α2,w|, for all w ‰ w˚, this derivative is either strictly positive (α2,w˚ ą

0) or strictly negative (if α2,w˚ ă 0). Assume w.l.o.g. that α2,w˚ ą 0 and hence
ptpw

˚q is strictly increasing in et. Therefore

Erptpw˚qets ą 0,

by Lemma 5. ptpw˚q is not exogenous.

Proof of Proposition 6

Proof. Under Assumption 4, we have

ptpw
˚q “

exppx1tγ ` α1,w˚z
˚
t ` ξw˚,tq

řV
w1“1 exppx1tγ ` α1,w1z

˚
t ` ξw1,tq

.

Relevance:

If we take the derivative of ptpw˚q w.r.t. z˚t

Bptpw
˚q

Bz˚t
“

exppx1tγ ` α1,w˚z
˚
t ` ξw˚,tq

p
řV
w1“1 exppx1tγ ` α1,w1z

˚
t ` ξw1,tqq

2

ˆ

V
ÿ

w1“1

pα1,w˚ ´ α1,w1q exppx1tγ ` α1,w1z
˚
t ` ξw1,tq.
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By Assumption 4.2, |α1,w˚ | ą |α1,w|, for all w ‰ w˚, and hence this derivative is
either strictly positive (α1,w˚ ą 0) or strictly negative (if α1,w˚ ă 0). Assume w.l.o.g.
that α1,w˚ ą 0 and hence ptpw˚q is strictly increasing in z˚t . Therefore

Erptpw˚qYts “ Erptpw˚qpδz˚t ` νtqs ą 0,

by Lemma 5, and where the last line follows from the reduced form Yt “ δz˚t ` νt.
Hence ptpw˚q is relevant.

Exogeneity:

Erptpw˚qets “ ErErptpw˚qet|z˚t s “ Erptpw˚qEret|z˚t ss “ 0,

where the last equality follows from the assumption Eret|z˚t s “ 0.
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